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Surface Effects on the Near-Tip
Stresses for Mode-I and
Mode-III Cracks
Based on the surface elasticity theory and using a local asymptotic approach, we ana-
lyzed the influences of surface energy on the stress distributions near a blunt crack tip.
The dependence relationship of the crack-tip stresses on surface elastic parameters is
obtained for both mode-I and mode-III cracks. It is found that when the curvature radius
of a crack front decreases to nanometers, surface energy significantly affects the stress
intensities near the crack tip. Using a kind of surface elements, we also performed finite
element simulations to examine the surface effects on the near-tip stresses. The obtained
analytical solution agrees well with the numerical results. �DOI: 10.1115/1.2712233�

Keywords: crack, surface elasticity, stress, nanomechanics

1 Introduction
Analysis of deformations and stresses at crack tips is a funda-

mental issue for understanding the failure behavior of engineering
materials and structures. At macroscopic scale, the crack front
profile is usually considered to be infinitely sharp, and the corre-
sponding elastic and elastic-plastic crack-tip fields have been well
established in the classical fracture mechanics. In physical nature,
however, most crack tips are not ideally sharp but blunt with a
finite curvature radius, e.g., on the order of microns or nanom-
eters. First, only when the spacing between the two surfaces of a
crack is larger enough beyond some physical limits �e.g., the cut-
off radius of Lennard-Jones potential�, are the surfaces free from
atomic interaction. Second, the atoms near a crack tip experience
a local environment different from those in the bulk, and their
tendency to minimize the system free energy may also cause
blunting of the crack tip.

Atomic simulation is very powerful in pursuing the details of
deformations and evolution processes at nanoscale, and has been
employed to investigate fracture problems �1–4�. Through mas-
sively parallel atomistic simulations, Buehler and Gao �1� and
Buehler et al. �2� reported the dynamical fracture instabilities due
to local hyperelasticity at crack tips. Abraham et al. �4� developed
a concurrent multiscale method spanning the continuum to quan-
tum length scales to study brittle fracture problems.

Recently, continuum mechanics models of surface elasticity
have also been adopted to explore the features of mechanical de-
formations at nanoscale by incorporating the effects of surface/
interface energy �5–9�. The generic and mathematical formulation
of surface elasticity theory was presented by Gurtin and Murdoch
�10� and Gurtin et al. �11�, in which a surface is regarded as a
two-dimensional membrane adhered to the bulk without slipping.
Experiments on some elementary deformation modes, such as
uniaxial stretching of plates, bending of beams, and torsion of
bars, showed that the predictions from the surface elasticity theory
agrees well with the results from directly atomic simulations �5,6�.

Therefore, the surface elasticity theory has been employed to elu-
cidate many size-dependent phenomena at nanoscale, for ex-
amples, the deformation around a spherical nanoinhomogeneity
�7�, the effective modulus of elastic solid with nanocavities
�12,13� and nanoinclusions �14,15�. In addition, based on the
analysis for an elliptic void, Wu �16� addressed the effect of sur-
face stress on the deformation of a crack, in which only the con-
stant residual surface stress is considered.

Through the embedded atom method, Hoagland et al. �17� ex-
amined the deformation field near a crack tip. They found that the
stresses calculated from atomic models are in a good agreement
with the predictions of linear elastic fracture mechanics except in
a small vicinity of the crack tip, where the effects of surface
energy should be accounted for. Therefore, local analysis near a
crack tip may capture the key features of surface effects on crack
tip fields. Creager and Paris �18� and Smith �19� investigated the
stress distributions near the tip of a blunt crack in the light of
classical elastic theory. In the present paper, we will use Gurtin’s
surface elasticity theory to examine the surface effects on the
deformations and stresses in the immediate vicinity of a blunt
crack tip.

The paper is organized as follows. The basic equations of Gur-
tin’s surface elasticity theory are reviewed briefly in Sec. 2. In
Secs. 3 and 4, the stress distributions near the tips of mode-III and
mode-I cracks are determined through a local approach. In Sec. 5,
the obtained theoretical results are compared to our finite element
simulations with surface effects.

2 Basic Equations of Surface Elasticity
In Gurtin’s surface elasticity theory �11�, a surface is regarded

as an elastic but negligibly thin membrane, which is adhered to
the underlying bulk material without slipping and has elastic con-
stants different from the bulk. The surface stress tensor is a func-
tion of the surface strain tensor, which depends on the deforma-
tion of the bulk material. The equilibrium and constitutive
equations in the bulk of the material are the same as those in the
classical theory of elasticity, but the presence of surface stress
gives rise to a nonclassical boundary condition. Only several basic
equations of the surface elasticity theory are reviewed here. For its
detailed mathematical formulation, the reader may refer to Gurtin
and Murdoch �10� and Gurtin et al. �11�.
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In the absence of body forces, the equilibrium equations and the
isotropic constitutive relations in the bulk read

�ij,j = 0 �1�

�ij = 2G�ij + ��kk�ij �2�

where G and � are the Lame constants, �ij and �ij are the stress
tensor and strain tensor in the bulk material, respectively. The
strain tensor is related to the displacement vector ui by

�ij = 1
2 �ui,j + uj,i� �3�

Throughout the paper, Einstein’s summation convention is
adopted for all repeated Latin indices �1, 2, 3� and Greek indices
�1, 2�.

Assume that the surface adheres perfectly to the bulk material
without slipping. The equilibrium conditions on the surface are
obtained as

t� + ���,�
s = 0, �ijninj = ���

s ��� �4�

where ni denotes the outward normal vector to the surface, t� is
the negative of the tangential component of the traction ti=�ijnj
along the �i direction of surface, ��� is the surface curvature
tensor.

The surface stress tensor ���
s is related to the surface energy

density ������ by

���
s = 	0��� +

��

����

�5�

where ��� is the Kronecker �, ��� the second-rank tensor of sur-
face strains, and 	0 the residual surface tension under unstrained
condition. For an isotropic surface, the surface stresses are given
by

���
s = 	0��� + 2�
s − 	0������� + ��s + 	0������� �6�

where 
s and �s are surface elastic constants.

3 Near-Tip Deformation for Mode-III Crack
Now we consider the deformation near a two-dimensional crack

tip, which has an initially blunt shape of curvature radius �. Refer
to a Cartesian coordinate system �x ,y� and a polar coordinate
system �r ,
�, as shown in Fig. 1. The origin of the coordinate
systems is located at the curvature center of the crack tip, and the
z-axis is normal to the x-y plane.

For mode-III problems, the only nonvanishing displacement w
along z-axis satisfies the Laplace’s equation

�2w

�x2 +
�2w

�y2 = 0 �7�

The displacement w can be given by an analytical function F�z� of
z=x+yi as

Gw = Re�F�z�� �8�
and the stress components are expressed as

�r3 − i�
3 = exp�i
�
dF

dz
�9�

As it has been found from atomic simulations �17�, the influ-
ence of surface energy is localized near the crack tip. Therefore,
we use a local analysis to focus on an immediate vicinity of the
crack tip for �z−����. Hereby, F�z� can be expressed in power
series of �z−�� as

F�z� = a0 + ib0 + �a1 + ib1��z − �� + �a2 + ib2��z − ��2 + o��z − ��2�
�10�

where a0, b0, a1, b1, a2, and b2 are real constants. Then to the first
order of �z−��, the stresses are given from Eqs. �9� and �10� as

�r3 = a1 cos 
 − b1 sin 
 + 2r�a2 cos 2
 − b2 sin 2
� − 2��a2 cos 


− b2 sin 
�

�
3 = − �b1 cos 
 + a1 sin 
� − 2r�b2 cos 2
 + a2 sin 2
�

+ 2��b2 cos 
 + a2 sin 
� �11�
The corresponding nonvanishing strain components are

�r3 = �3r =
�r3

2G
, �
3 = �3
 =

�
3

2G
�12�

Then one obtains the surface stress components on the crack sur-
face

�3

s = �
3

s = 2Gs�3
, �33
s = �



s = 	0 �13�

with Gs=
s−	0.
On the crack surface near the tip �r=��, the surface boundary

condition in Eq. �4� reduces to

�r3 = −
��
3

s

r�

�14�

Substitution of Eqs. �11�–�13� into Eq. �14� leads to

a1 cos 
 − b1 sin 
 + 2��a2 cos 2
 − b2 sin 2
� − 2��a2 cos 


− b2 sin 
�

= −
Gs

G�
�b1 sin 
 − a1 cos 
 + 4��b2 sin 2
 − a2 cos 2
�

+ 2��a2 cos 
 − b2 sin 
�� �15�

For a small value of 
 near the crack tip, we expand Eq. �15� in
terms of 
 up to the square order; that is,

a1 − 
�b1 + 2�b2� − 
2�a1

2
+ 3�a2	

=
Gs

G�

2�a2 + a1 − 
�b1 + 6�b2� − 
2�a1

2
+ 7�a2	� �16�

Comparing the factors of 1, 
 and 
2 at the two sides of Eq. �16�
gives

a1 = a2 = 0, b2 = −
b1

2�
� �G − Gs

�G − 3Gs	 �17�

Then the shear stress at the crack tip �r=�, 
=0� is obtained as

�
3
p = �
3��,0� = − b1 �18�

If no effect of surface elasticity is considered, Eq. �18� should
reduce to the solution of classical linear elasticity. Therefore, the
parameter b1 can be determined from the linear elastic fracture
mechanics. Since the surface constants do not appear in Eq. �18�,
surface energy does not affect the stresses at the tip of a mode-III
crack.

Fig. 1 A blunt crack with a finite curvature radius at its tip
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However, at a distance t ahead of the crack tip �r=�+ t, 
=0�,
the shear stress is given by

�
3

�
3
p = 1 −

t

�
k �19�

with k= ��G−Gs� / ��G−3Gs�.
Equation �19� clearly demonstrates that the stress depends not

only on t, �, and �
3
p but also on the surface constant Gs. Its last

term stands for the relative influence of surface elasticity on the
stress. For metals, Gs /G is usually on the order of nanometers
�5,7,12�. Therefore, it is only when the curvature radius � is of the
order of nanometers that the effects of surface energy become
significant. For a very blunt crack ���Gs /G�, k→1 and the result
reduces to that of classical elasticity analysis �19�. For a very
sharp crack ���Gs /G and k→1 /3�, however, the solution in Eq.
�19� is different distinctly from that of classical elasticity.

4 Near-Tip Deformation for Mode-I Crack
Then we consider the deformation near the tip of a mode-I

crack under plane-strain conditions. In this case, �

 is the only
nonzero surface strain on the crack surface, and the surface stress
�



s is given by

�


s = 	0 + Es�

 �20�

with Es=2
s+�s−	0 being the surface elastic modulus.
On the crack surface near the tip, the surface boundary condi-

tions in Eq. �4� are simplified as

�rr =
�



�s�

�
, �r
 = −

��


�s�

��

�21�

According to the complex variable formulation �20�, the
stresses in the bulk can be expressed by two analytic functions
��z� and ��z� of z=x+iy as

�rr + �

 = 2���z� + ��z�� ,

�

 − �rr + 2i�r
 = 2�z̄���z� + ��z��exp�2i
� �22�
Because of the special significance of the stress values at the crack
tip for the initiation of fracture, we are concerned mainly with the
surface elasticity effects on the stress strength in the immediate
vicinity of the crack tip ��z−�����. The analytic functions ��z�
and ��z� can be expressed in the form of power series as

��z� = �a0 + ib0� + �a1 + ib1��z − �� + �a2 + ib2��z − ��2 + o��z

− ��2�

��z� = �c0 + id0� + �c1 + id1��z − �� + o��z − ��� �23�

where a0, b0, a1, b1, a2, b2, c0, d0, c1, and d1 are all real constants.
Substituting Eq. �23� into �22� leads to the following expressions
of stress components to the first order of �z−��:

�rr + �

 = 2�2a0 + �a1 + ib1��z − �� + �a1 − ib1��z̄ − ���

�

 − �rr + 2i�r
 = 2 exp�2i
��z̄�a1 + ib1 + 2�a2 + ib2��z − ��� + c0

+ id0 + �c1 + id1��z − ��� �24�

On the crack surface z=� exp�i
�, the stress components are ex-
pressed as

�rr = 2a0 − 2�a1 + �a1 cos 
 − �b1 sin 
 − c0 cos 2
 + d0 sin 2


− 2�2a2�cos 2
 − cos 
� + 2�2b2�sin 2
 − sin 
� − �c1�cos 3


− cos 2
� + �d1�sin 3
 − sin 2
�

�r
 = �a1 sin 
 + �b1 cos 
 + d0 cos 2
 + c0 sin 2
 + 2�2a2�sin 2


− sin 
� + 2�2b2�cos 2
 − cos 
� + �d1�cos 3
 − cos 2
�

+ �c1�sin 3
 − sin 2
�

�

 = 2a0 + �3 cos 
 − 2��a1 − 3�b1 sin 
 + c0 cos 2
 − d0 sin 2


+ 2�2a2�cos 2
 − cos 
� − 2�2b2�sin 2
 − sin 
� + �c1�cos 3


− cos 2
� − �d1�sin 3
 − sin 2
�

�zz = ���rr + �

� �25�

For the considered plane-strain problem, the strain �

 is given by

�

 =
1

2G
��1 − ���

 − ��rr� �26�

where � is the Poisson’s ratio.
From Eqs. �25�, �26�, and �20�, one can obtain the surface stress

�


s on the crack surface. Analogously to the derivation in Sec. 3,

we substitute the stresses and surface stress into the boundary
conditions in Eq. �21�, expand the relations in terms of 
 up to the
square order and compare the coefficients of 1, 
, and 
2. Then the
constants a1, b1, a2, b2, c1, and d1 are obtained in terms of a0, b0,
c0, and d0 as

a1 =
2a0 − c0 − 	0/� − 2a0� + 4��a0 − �c0

�� + 1��

b1 =
1 + �

3� − 4�� − 1
�d0

�
	

c1 = �4a0 − c0 + �32�2a0 − 8�c0 + 7c0 + 12a0 − 40�a0��2 + �6c0

− 8�c0 − 16a0 + 24�a0�� + �6� − 8�� − 2�	0/��/��1 + ��2��

d1 = �1 − 2�

1 − 6�
	�3d0

�
	

a2 = 3�− 2a0 + �1 + 4�� − 3��	0/� − 12��a0 − 4�c0 + 8�a0 − 6a0

+ 4��c0 + �20�a0 − 16�2a0 + 4�c0 − 4c0 − 6a0��2�/�2�1

+ ��2�2�

b2 = �4� − 1

1 − 6�
	�3d0

�2 	 �27�

where the nondimensional parameter �=Es / �2G�� signifies the
surface effects.

Then the stresses at the crack tip �r=� ,
=0� are determined as

�yy
p = �yy

0 �1 + ��

1 + �
	 −

	0

�1 + ���

�xy
p =

4d0��� − 1�
1 − 3� + 4��

�xx
p = �yy

0 ��1 − ��
1 + �

+
	0

�1 + ���
�28�

where �yy
0 =4a0 stands for the stress �yy�� ,0� at the crack tip

without surface effects. It is seen from Eq. �28� that the surface
energy significantly alters the near-tip stresses, which rely on the
surface constants and the curvature radius of the crack tip.

Equation �28� should reduce to the solution of classical linear
elastic fracture mechanics if the effect of surface elasticity is ne-
glected �i.e., �=0 and 	0=0�. Therefore, the parameters a0 and d0
can be determined from the well-known K-field solution of linear
elasticity. From the solution for a blunt mode-I crack �18�, it is
obtained �yy

0 =4a0=2KI /��� and d0=0, where KI is the stress
intensity factor in the far field.

For �=0 and 	0�0, Eq. �28� reduces to �yy
p /�yy

0 =1
−	0 / ��yy

0 ��. The contribution from surface energy is completely
determined by the residual surface stress and the root radius. For
a very blunt crack ���	0 /�yy

0 �, �yy
p /�yy

0 →1 and then the influ-
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ence of surface energy is negligible. But for a very sharp crack
��
	0 /�yy

0 �, the contribution from surface energy should be taken
into account. For a mode-I crack, the variation of �yy

p /�yy
0 with

respect to the curvature radius of the crack tip is shown in Fig. 2,
where lt=	0 /�yy

0 . The curvature radius not only affects the mag-
nitude of stress, but changes its deformation state from stretching
to compression. A positive residual surface stress in front of a
mode-I crack may postpone its propagation and therefore en-
hances the fracture toughness of the material. But a negative re-
sidual surface stress will lower the fracture toughness of the ma-
terial. These conclusions are in qualitative agreement with those
in Wu �16�, where the stress intensity factor is analyzed using the
assumption of constant surface stress.

For 	0=0 and ��0, Eq. �28� simplifies to �yy
p /�yy

0 = �1
+��� / �1+��. For metals, ls=Es / �2G� is usually on the order of
nanometers �5,7,12�. Therefore, it is seen from Eq. �28� and �
= ls /� that only when the curvature radius at the crack tip reduces
to nanometers do the surface effects become significant. For a
very blunt crack ��� ls�, �→0 and �yy

p /�yy
0 →1, whereas for a

very sharp crack ��� ls�, �→� and �yy
p /�yy

0 →�. With the de-
crease in the crack root curvature radius, the stress ratio �yy

p /�yy
0

reduces continuously from 1 to �, as shown in Fig. 3.

5 Finite Element Formulation of Surface Elasticity
To examine the accuracy of the analytical solution in Eq. �28�,

we also carried out finite element simulations to calculate the
stress distributions near the crack tip. The surface element devel-
oped recently by Gao et al. �13� is used to account for the effects
of surface elasticity.

The total potential energy � in the surface elasticity theory
consists of three parts, the bulk elastic energy Ub, the surface
elastic energy Us, and the work of external force W, i.e.,

� = Ub + Us − W �29�

Ub and W can be calculated from the bulk elements as in the
classical elasticity.

For elements on surfaces or interfaces, we incorporate the in-
fluence of surface energy. The surface energy for each surface
element is given by �13�

Us =�
�

� ��s�Td��s�d� �30�

where � is the area of surface element, ��s� and ��s� are the
surface stress matrix and the surface strain matrix, respectively.
Substituting Eq. �5� into Eq. �30�, the surface energy is rewritten
as

Us =
1

2�
�

��s�T�S���s�d� +�
�

��s�T�F�d� �31�

where �S� and �F� stand for the surface elastic matrix and residual
surface stress matrix, respectively. For a surface adhered perfectly
to the bulk, the surface strains of a surface element can be deter-
mined by its adjacent bulk element via the relation

��s� = �Bs���e� �32�

where �Bs� is the strain-displacement matrix of the surface ele-
ment, and ��e� the nodal displacement matrix of bulk element.
Therefore, the surface energy can be expressed as

Us = 1
2 ��e�T�Ke

s���e� + ��e�T�Pe
s� �33�

where �Ke
s� and �Pe

s� are the surface stiffness matrix and the sur-
face residual stress matrix, respectively. They are defined as

�Ke
s� =�

�

�Bs�T�S��Bs�d� �34�

�Pe
s� =�

�

�Bs�T�F�d� �35�

According to the principle of minimum potential energy, the
relationships between the nodal displacements and the nodal
forces read

��Ke� + �Ke
s����e� = �Pe� − �Pe

s� �36�

for surface elements, and

�Ke���e� = �Pe� �37�

for bulk elements, respectively, where �Ke� is the stiffness matrix,
and �Pe� is the nodal force matrix of bulk elements.

The above finite element method is adopted here to investigate
the deformation near a blunted crack tip with the effect of surface
energy. In our calculations, the front tip of a semi-infinity crack is
assumed to have the shape of a circular arc, and we take the
following surface constants of aluminum �7�: �s=6.842 N /m,

s=−0.3755 N /m, and 	0=0.

Our numerical simulations show that the stress distributions
with surface elasticity effects have a good agreement with the
predictions of linear elastic fracture mechanics except in a small
vicinity of the crack tip, where the surface energy has a significant
influence. Similar results were also obtained directly from atomic
simulation �17�. The calculated circumferential stress �yy

p in Eq.
�28� at the crack tip normalized by �yy

0 is plotted in Fig. 3 as a
function of the root curvature radius �. It is seen that the analytical
solution and the numerical result for the stresses at the crack tip

Fig. 2 Variation of �yy
p /�yy

0 with respect to the curvature radius
for �=0

Fig. 3 Variation of �yy
p /�yy

0 with respect to the curvature radius
for �0=0
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agree reasonably well. Therefore, the local analysis adopted in the
present paper can capture the most prominent features of surface
effects on the near-tip stresses and deformations.

6 Conclusions
In the present paper, we adopt an asymptotic method to inves-

tigate the effects of surface energy on the stresses near a crack tip
with finite root radius. The analytical relations between the sur-
face constants and the stresses at the crack tip are obtained. The
results show that only when the curvature radius at the crack tip
reduces to nanometers do the surface effects become significant.
For mode-III cracks, surface energy does not affect the stresses at
crack tips, while it does influence the stresses at a small distance
ahead of the crack tip. For mode-I cracks, the surface energy
evidently alters the stress magnitudes at the crack tips. The ob-
tained analytical solution agrees reasonable well with the results
of our finite element numerical simulations, in which the effects of
surface energy have been incorporated. This study might be help-
ful for understanding some size-dependent fracture phenomena,
especially for micro- or nanosized devices and systems.
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Instability of a Hollow Elastic
Cylinder Under Tension, Torsion,
and Inflation
Background. Many papers on the elastic stability of both thin-walled and massive (three-
dimensional) bodies regard the bifurcation of equilibrium in the case of compressive
loads. Although, the elastic instability may also occur under tensile stresses. Method of
Approach. In the present paper on the basis of three-dimensional equations of the non-
linear elasticity the instability of a stretched infinite hollow cylinder under torsion and
inflation is investigated. The bifurcational method of stability analysis is used. Results.
The critical surfaces and stability region in the space of loading parameters are defined
for a Biderman material and special model of incompressible medium, which possess
essential material nonlinearity. The influence of a wall thickness on the instability of a
hollow cylinder is analyzed. Conclusions. Based on the obtained results, a simple and
efficient practical criterion of stability under tension is formulated. This criterion can be
represented in the form of the Drucker postulate, given in terms of external loads.
�DOI: 10.1115/1.2723824�

Keywords: nonlinear elasticity, stability of deformable bodies, criterion of stability

1 Introduction
The problem of equilibrium and motion stability for deformable

bodies is of major importance both from theoretical and practical
points of view. For the elastic medium the problem of equilibrium
stability is extensively investigated for thin and thin-walled bodies
in the form of rods, plates, and shells �1–6�. In the last decades the
stability theory of three-dimensional elastic bodies has developed
significantly. Different methods and approaches for the stability
analysis of massive bodies as well as a solution of some instability
problems, based on a three-dimensional elasticity, are presented in
�7–16�.

A common approach for the investigation of equilibrium stabil-
ity in the elasticity theory is the bifurcational method. Within the
framework of this method the stability analysis is reduced to the
solution of a homogeneous boundary-value problem, linearized in
the vicinity of a basic state, i.e., to the determination of eigenval-
ues �critical loads� and eigenfunctions �instability modes�. The
conservatism of external loads is the necessary condition for the
correctness of the bifurcational method. In papers on the elastic
stability of both thin-walled and massive �three-dimensional� bod-
ies the bifurcation of equilibrium under compressive loads is con-
sidered most often. Though, the elastic instability may also occur
under tensile stresses. Specifically, it is commonly known from
the tension tests for rods that after reaching the local maximum of
a load-extension curve, the process of a homogeneous deforma-
tion became unstable. The circular cylindrical form of a stretched
sample changes into the axisymmetric mode of equilibrium, i.e.,
the neck is formed. The instability under tensile stresses has the
following features in the comparison with the instability under
compression:

�1� Most often the instability of stretched bodies occurs under
large deformations, which demands the complete account
of a geometrical and material nonlinearity in the equations
of the elasticity theory.

�2� The instability under tensile loads is only possible for some
models of nonlinearly elastic materials.

In Refs. �17–19� from the standpoint of three-dimensional elas-
ticity the stability problem for an elastic rod under uniaxial ten-
sion has been investigated. The effect of torsion on the stability of
a solid circular cylinder under tension has been analyzed in �20�.
The instability of a stretched hollow cylinder that is inflated by an
internal pressure has been studied in �21–23�.

In the present paper on the basis of a three-dimensional nonlin-
ear elasticity we consider the stability problem for a hollow cir-
cular infinite cylinder under three-parameter stress: the axial ten-
sion, torsion, and inflation. This problem is connected with the
standard test types for materials in the experimental mechanics of
deformable bodies.

2 The Prestressed State
The set of elastostatics equations for an isotropic incompress-

ible solid �12,24–26� consists of the equilibrium equation

div T = 0 �1�
and the constitutive relation

T = �1�I1,I2�F − �2�I1,I2�g − p1E

�1�I1,I2� = 2
�W

�I1
�2�I1,I2� = 2

�W

�I2

F = �
m,n,s=1

3
�Xs

�xn

�Xm

�xn
isim I1 = tr F = �

n,s=1

3
�Xs

�xn

�Xs

�xn

I2 =
1

2
�tr2 F − tr F2� �2�

In these formulas T is the Cauchy stress tensor, F is the Finger
strain measure, g=F−1 is the Almanci strain measure, I1 , I2 are the
first and second invariants of the tensor F, E is the unit tensor, p1
is the component of the stress in the incompressible solid, not
defined by strains, W�I1 , I2� is the strain-energy function of an
elastic body, xn �n=1,2 ,3� are Cartesian coordinates in the refer-
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ence configuration, Xs �s=1,2 ,3� are Cartesian coordinates in the
strained state, im �m=1,2 ,3� are the basis vectors of the Cartesian
coordinate system, div is the divergence operator in Eulerian co-
ordinates, which can be rectangular �Cartesian� or curvilinear. In
Cartesian coordinates the divergence operator has the following
form div T= ik ·�T /�Xk. Symbol tr denotes the trace of a second-
rank tensor.

We will use the cylindrical coordinate system. Consider the
deformation of a torsion, tension, and inflation for a hollow cir-
cular cylinder �12,24� of incompressible material. It is given by
the relations

R = �� + �−1�r2 − r1
2� � = � + �z Z = �z �,�,� = const

�3�

Here r ,� ,z are cylindrical coordinates in the reference configura-
tion of a body �Lagrangian coordinates�, R ,� ,Z are cylindrical
coordinates in the strained state �Eulerian coordinates�, � is the
stretching coefficient along the cylinder axis, � is the angle of
twist per unit length, � is the inner radius square of the deformed
hollow cylinder, and r1 is the inner radius of the hollow cylinder
in the reference state.

The expressions for the Finger strain measure F and Almanci
strain measure g, corresponding to the deformation �3�, have the
following form:

F = f2�R�eReR + f1�R�f2
−1�R�e�e� + ��R�e�eZ + eZe�� + �2eZeZ

g = f2
−1�R�eReR + �2f2�R�e�e� − ��Rf2�R��e�eZ + eZe��

+ f1�R�eZeZ �4�

I1 = f2�R� + f1�R�f2
−1�R� + �2 I2 = f2

−1�R� + �2f2�R� + f1�R�

f1�R� = �−2�r1
2�2 + ��2�R2 − �� + 1�

f2�R� = ��R�−2�r1
2 + ��R2 − ���

eR = i1 cos � + i2 sin � e� = − i1 sin � + i2 cos � eZ = i3

�5�

where eR ,e� ,eZ is the orthonormal basis of the Eulerian cylindri-
cal coordinates.

If outer lateral surface of the cylinder is free, then, taking Eqs.
�1�, �2�, and �4� into account, the relation for the Cauchy stress
tensor has the form

T = �R�R�eReR + ���R�e�e� + ��Z�R��e�eZ + eZe�� + �Z�R�eZeZ

�R�R� =�
R

R0

��f2�	� − f1�	�f2
−1�	���1�	� + ��2f2�	�

− f2
−1�	���2�	��

d	

	

���R� = f1�R�f2
−1�R��1�R� − �2f2�R��2�R� − p1�R�

�Z�R� = �2�1�R� − f1�R��2�R� − p1�R�

��Z�R� = ��R��1�R� + f2�R��2�R��

p1�R� = f2�R��1�R� − f2
−1�R��2�R� − �R�R�

R0 = �� + �−1�r0
2 − r1

2� �6�

Here r0 and R0 are the outer radii of the hollow cylinder before
and after deformation, respectively.

The axial load K and torque M, acting at any cross section of
the cylinder, and the internal pressure p, applied at the inner lat-
eral surface, are the functions of the three loading parameters
� ,� ,�, defined by the formulas

K��,�,�� = 2
�
R1

R0

�Z�R�RdR M��,�,�� = 2
�
R1

R0

��Z�R�R2dR

p��,�,�� = − �R�R1� R1 = �� �7�

where R1 is the deformed inner radius.

3 The Perturbed Equilibrium
We will consider a small perturbation of the prestressed equi-

librium state, defined in the previous section. The linearized equi-
librium equations for the incompressible solid, which describes
the perturbed state, have the form �12,27,28�

div � = 0 � = T· − �grad u�T · T T· = � d

d�
T�R + �u�	

�=0

div u = 0 u = u1eR + u2e� + u3eZ

grad u = eR
�u

�R
+ e�

�u

R��
+ eZ

�u

�Z
�8�

In these formulas � is the linearized Piola stress tensor, R is the
radius-vector in the prestressed state, grad is the gradient operator,
and u is the perturbance vector. The linearized boundary condi-
tions at the lateral surfaces of the hollow cylinder

eR · � = peR · �grad u�T for R = R1

eR · � = 0 for R = R0 �9�

express the fact that the internal pressure p is the tracking load
and there are no loads at the outer surface in the perturbed state.

Taking Eq. �2� into account, the expression for the tensor �
becomes �28�

� = �1F · grad u + �2��grad u� · g + g · �grad u�T + �grad u�T · g�

+ p1�grad u�T + �1
· F − �2

· g + qE q = − p1
·

�i
· = 2�i1 tr�F · grad u� − 2�i2 tr�g · grad u� �ij =

d�i

dIj
i, j = 1,2

�10�

We will seek the perturbance vector components u1 ,u2 ,u3 and
linearized function of the hydrostatic pressure q=−p1

• in the form

u1 = U1�R�cos�n� + 
Z� u2 = U2�R�sin�n� + 
Z�

u3 = U3�R�sin�n� + 
Z� q = Q�R�cos�n� + 
Z� 
 � 0

n = 0,1,2, . . . �11�

where 
 is a real number. This representation permits the separa-
tion of variables � ,Z in the linearized equilibrium equations �8�
and boundary conditions �9�, and reduces the stability analysis to
the solution of a linear homogeneous boundary-value problem for
a set of ordinary differential equations.

Taking Eqs. �10� and �11� into account, the linearized equilib-
rium Eq. �8� can be written as follows �in these formulas the
accent denotes a derivative with respect to R�,


p1 + f2�1 + 3
�2

f2
+ 2f2

2�11 − 4�12 + 2
�22

f2
2 �U1� + 
 p1

R
+ p1� + � f2�

+
f2

R
	�1 + f2�1� + 3� 1

R
−

f2�

f2
	�2

f2
+ 3

�2�

f2
+ 2f2�2f2�

+
f2

R
	�11 + 2f2

2�11� − 4
�12

R
− 4�12� + 2� 1

R
− 2

f2�

f2
	�22

f2
2

+ 2
�22�

f2
2 �U1� + 
− �nf3

R
+ �
� +

f1

R2f2
	�1 − �
2 +

n2

R2
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+ 3
�2f2

2

R2 	�2

f2
−

p1

R2 +
2

R
� f1� −

f1
2

Rf2
2	�11 + 2

f1�11�

R
+

4

R
� f1f2�

f2
3

−
f1�

2f2
2 +

�2f1

R
− �2f2f2�	�12 −

2

R
��2f2

2 +
f1

f2
2	�12�

− 2
�4f2

2�22

R2 + 2
�2�22�

R
�U1 + 
np1

R
+ � f4 +

n

Rf2
2	 f2�2

+ 2f2f3�11 − 2f2
2� f4 +

f3

f2
3	�12 + 2f4�22�U2� + 2
−

np1

2R2

−
f3�1

R
− � f4 +

n

Rf2
2 + 2

�2n

R
	 f2�2

2R
+ f3� f2

R
+ f2� +

f2f3�

f3

−
f1

Rf2
	�11 + f2f3�11� − �f2

2��f4

R
+

2
�

f2
2 	�22 + f4�22�

+ � f1f4

R
− 2f2f4f2� + 2�
�f2

2 −
f3

Rf2
−

f3�

f2
+

�2f2f3

R

+
f3f2�

f2
2 	�12 − f2

2� f4 +
f3

f2
3	�12� �U2 + 

p1 + � 


f2
+ f2f5	�2

+ 2��f2�11 − 2f2
2� f5 +

��

f2
3 	�12 + 2f5�22�U3� + 2
��nf2�2

R

+ ��� f2

R
−

f1

Rf2
+ f2�	�11 + ��f2�11� + ���3f2

R
−

��

Rf2

+ 2��nf2f2� +
��f2�

f2
2 + �f1 − f2

2�
f5

R
− 
f2f1� − 
f1f2�	�12

− �f2
2f5 + ����12� + ��1 − �2f2

2�
f5

R
+ f5�	�22 + f5�22� �U3

+ Q� = 0


−
np1

R
− f2� f4 +

n

Rf2
2	�2 − 2f2f3�11 + 2� f2

2f4 +
f3

f2
	�12

− 2f4�22�U1� + 
−
np1

R2 −
np1�

R
−

2f3�1

R
− �3f2f4

R
+ f2�f4 +

n

R2f2

−
f2�n

Rf2
2	�2 − � f2f4 +

n

Rf2
	�2� −

2f1f3�11

Rf2
+

2

R
��2f2f3

+ f1f4��12 −
2�2f2

2f4�22

R
�U1 + f2��1 + �2�2�U2� + f2
� f2�

f2

+
1

R
	��1 + �2�2� + �1� + �2�2��U2� + 
−

n2p1

R2 −
p1�

R
− �nf3

R

+ �
� +
f1

R2f2
	�1 − ��2f2�

R
+

1

R2f2
−

f2�

Rf2
2 +

3nf2f4

R

+ �
�f2	�2 − �1 + �2f2
2�

�2�

Rf2
− 2f3

2�11 + 4f2f3f4�12

− 2f2
2f4

2�22�U2 − ��Rf2�2U3� − ����Rf2� + 3f2��2 + Rf2�2��U3�

+ 
−

np1

R
+ f2�n��

R
−

nf5

R
− 2
f4	�2 − 2��f3�11

− 2f2
2f4f5�22 + 2f2�f3f5 + ��f4��12�U3 −

n

R
Q = 0


− 
p1 − � f2f5 +



f2
	�2 − 2��f2�11 + 2� f2

2f5 +
��

f2
	�12

− 2f5�22�U1� + 
−

p1

R
− 
p1� + �
f2�

f2
2 − 
f1� −




Rf2
−

f2f5

R

+ ��n� f2� +
2f2

R
		�2 − � f2f5 +




f2
	�2� −

2��f1�11

Rf2

+
2

R
��3�f2 + f1f5��12 −

2�2f2
2f5�22

R
�U1 − ��Rf2�2U2�

− ����f2 + Rf2���2 + Rf2�2��U2� + 
−

np1

R
+ f2���� 1

R
+

f2�

f2
	

+ 
f3 − 
f4 −
2nf5

R
	�2 + ��f2�2� − 2��f3�11 + 2f2�f3f5

+ ��f4��12 − 2f2
2f4f5�22�U2 + �f2�1 + f1�2�U3� + 
� f2�

+
f2

R
	�1 + � f1� +

f1

R
	�2 + f2�1� + f1�2��U3� + 
− 
2p1 − 
nf3

R

+ �
���1 − f2
nf3

R
+ 3
f5��2 − 2�2�2�11 + 4��f2f5�12

− 2f2
2f5

2�22�U3 − 
Q = 0

U1� +
1

R
U1 +

n

R
U2 + 
U3 = 0

� = �n + �
 f3 =
nf1

Rf2
+ ��R
 f4 =

�2n

R
− ��R


f5 =

f1

f2
− ��n �12�

The boundary conditions �9� on the lateral surfaces will take the
form


 p1 − p

2
+

f2�1

2
+

3�2

2f2
+ f2

2�11 − 2�12 +
�22

f2
2 �U1� + 
 f1�11

−
f1 + �2f2

4

f2
2 �12 + �2�22�U1

R
+ 
 f2f3�11 −

f3 + f2
3f4

f2
�12

+ f4�22�U2 + 
 f2���11 −
�� + f2

3f5

f2
�12 + f5�22�U3 +

Q

2
= 0



�p1 + p� +

 + f2

2f5

f2
�2�U1 + ��Rf2�2U2� − ��f2�2U2

− �f2�1 + f1�2�U3� = 0


 p1 + p

R
n + � n

R
+ f2

2f4	�2

f2
�U1 − f2��1 + �2�2�U2� + 
p1 + p

+
1 + �2f2

2

f2
�2�U2

R
+ ��Rf2�2U3� = 0 at R = R1 �13�
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 p1

2
+

f2�1

2
+

3�2

2f2
+ f2

2�11 − 2�12 +
�22

f2
2 �U1� + 
 f1�11

−
f1 + �2f2

4

f2
2 �12 + �2�22�U1

R
+ 
 f2f3�11 −

f3 + f2
3f4

f2
�12

+ f4�22�U2 + 
 f2���11 −
�� + f2

3f5

f2
�12 + f5�22�U3 +

Q

2
= 0



p1 +

 + f2

2f5

f2
�2�U1 + ��Rf2�2U2� − ��f2�2U2

− �f2�1 + f1�2�U3� = 0


np1

R
+ � n

R
+ f2

2f4	�2

f2
�U1 − f2��1 + �2�2�U2� + 
p1

+
1 + �2f2

2

f2
�2�U2

R
+ ��Rf2�2U3� = 0 at R = R0 �14�

4 The Numerical Results
We have carried out the stability analysis of an infinite hollow

cylinder under torsion, tension, and inflation for two models of
incompressible material. The strain energy for a Biderman mate-
rial �26,29,30� is given by the relation

W�I1,I2� = d0�I2 − 3� + d1�I1 − 3� + d2�I1 − 3�2 + d3�I1 − 3�3

d0 � 0 d1 � 0 d3 � 0 d1 + d3 � 0 3d2 + �15d1d3 � 0

�15�
A power-law material �31,32� has the strain energy in the form

W�I1,I2� = d�I1 − 3�� d � 0 � � 1/2 �16�
All numerical results, presented in this paper, are obtained for the
next set of material constants: for a Biderman material d0=0,
d1=27, d2=−60, d3=80, and for a power-law material d=1,
�=0.51. For the given values of coefficients Hadamard’s condi-
tion �12,30� is satisfied for both materials.

To obtain conditions under which the boundary-value problem
�12�–�14� has a nonzero solution, we have used the numerical
method, suggested previously �28�. This method is based on a
finite-difference approximation for the set of ordinary differential
equations. Its efficiency has been tested on the stability problem
for a stretched infinite hollow cylinder with respect to small axi-
symmetric perturbations �the pure necking instability�. An explicit
bifurcation criterion for this problem can be derived from Eqs.
�12�–�14�, if one considers �=0, n=0, p=0 �R=r /���. We have
compared the stability analysis results, obtained using this explicit
criterion and suggested numerical method. The disarrangement
has been less than 0.05%.

By means of the approximate solution of the linear homoge-
neous boundary-value problem �12�–�14�, we construct the stabil-
ity region in the space of the loading parameters � ,� ,�. This
procedure is described below. According to Eq. �11�, the instabil-
ity mode for an infinite hollow cylinder under torsion, tension, and
inflation is characterized by two non-negative parameters: the in-
tegral parameter n and the real parameter 
. For the sufficiently
great number of the instability modes, which corresponds to the
values of n and 
 in the zero to several hundreds range, we obtain
the critical relations between the loading parameters � ,� ,�. Us-
ing these relations, the critical surfaces in the space of the param-
eters � ,� ,� are constructed. By analyzing obtained results, we
draw certain conclusions about these surface behaviors with fur-
ther increase in n and 
. This allows us to construct the bifurca-
tional stability region in the space of the loading parameters
� ,� ,�, i.e., the region in which the boundary-value problem
�12�–�14� has only zero solution. The boundary of this region

consists of the critical surfaces segments. The selection of these
segments is dictated by the arrangement of the whole set of criti-
cal surfaces and fulfilled substantially by sight, as shown in the
graphs below.

Using the expression for the internal pressure �7�, we map the
results, obtained in the space of the loading parameters � ,� ,�,
into the space of the parameters � ,� , p. The main reason for this
is that from the practical point of view the internal pressure is a
more suitable parameter of inflation, because generally it is quite
difficult to control the deformed inner radius of the tube �in con-
trast to the pressure� during experiments. But the use of the inter-
nal pressure as a parameter has one major limitation. Namely, for
both considered material models the function p�R1� shows a local
maximum �followed by a local minimum for a Biderman mate-
rial�, i.e., the pressure p is not a single-valued function of the
deformed inner radius R1 ��=R1

2�. For this reason we will only
consider the radius R1 before the local maximum of the function
p�R1�. We choose not to consider the radius after the local maxi-
mum, because it is difficult to realize the descending branch of the
pressure curve p�R1� during actual experiments.

We have analyzed the cylinder instability for the case of a ten-
sile axial load only. The curve which is noted K=0 in the graphs
below corresponds to the case of a zero axial load. The area lo-
cated to the left of this curve �in the graphs this area is hatched�
corresponds to the case of a compressive axial load, which is of
no interest in this paper.

Let �=h /r0, where h=r0−r1 is a wall thickness of the hollow
cylinder in the reference state. For all graphs presented in this
paper �=0.1, �0=�r0. In Figs. 1 and 2 some results for the case of
axisymmetric instability �n=0� are presented. In these graphs we
have plotted sections of the critical surfaces by the planes
p=const. All curves are symmetric about axis � and on each curve
the corresponding value of the parameter 
 is noted. For 
=0 the
boundary-value problem �12�–�14� have only trivial solutions for
both materials. The critical surfaces for the power-law material,
which corresponds to the values of 
�0.01, are almost undistin-
guishable from the critical surface, corresponding to 
=0.01. Ac-

Fig. 1 Sections of the critical surfaces for the Biderman mate-
rial in the case of axisymmetric instability

Fig. 2 Sections of the critical surfaces for the power-law ma-
terial in the case of axisymmetric instability
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cording to the obtained results, the first instability mode can cor-
respond to the different values of the parameter 
 for the different
load paths. For example, in the case of the uniaxial tension
��0=0, p=0� the first instability mode for both materials corre-
sponds to the arbitrarily small positive 
. But for a Biderman
material in the case of the sufficiently strong twisting ��0
�0.3, p=0� there is no cylinder instability for 
�0.01 �Fig. 1�,
and the first instability mode corresponds to 
�0.01. Thus, the
stability region boundary does not coincide with any critical sur-
face, obtained for some value of the parameter 
.

Sections of the critical surfaces for the case of asymmetric in-
stability �n�0� are plotted in Fig. 3.

According to the stability analysis, the region of asymmetric
instability �n�1� is embedded in the region of existence for the
axisymmetric solutions of the linearized boundary-value problem
�12�–�14�. This fact is easily seen if one compares the graphs,
presented in Figs. 1–3. Therefore, to construct the stability region
in the case of a tensile axial load it is sufficient to consider the
problem of stability with respect to axisymmetric perturbations
�n=0� only. Results, obtained for both considered materials, con-
firm this fact.

In Figs. 4 and 5 the sections of the stability region are plotted.
In these graphs the instability region is filled. This means
that there is no instability of the infinite hollow cylinder for any
load path �i.e., any curve in the space of the loading parameters�,
which does not have common points with the filled instability
region. For thin-walled cylinders ���0.1� we have determined
that the stability regions in the space of the parameters
� ,�0 ,�0 ��0=� /r0

2�, corresponding to the different values of �,
are almost undistinguishable.

5 The Practical Criterion of Stability
Consider a potential energy per unit length for the stretched,

twisted, and inflated hollow cylinder, as a function of the param-
eters � ,� ,�, defined by the formula

���,�,�� = 2
�
r1

r0

rW�I1�r�,I2�r��dr �17�

For the axial load K, torque M, and internal pressure p, the
following energy relations can be easily proved, using Eqs. �3�,
�5�–�7�, and �17�:

K��,�,�� =
����,�,��

��
M��,�,�� =

����,�,��
��

p0��,�,�� =
����,�,��

��
p0��,�,�� = �
p��,�,�� �18�

The condition of strict convexity for the potential energy per
unit length �, as a function of the axial stretching �, angle of
twist �, and deformed inner radius square �, is equivalent to the
three inequalities,

�2�

��2 � 0
�2�

��2

�2�

��2 − 
 �2�

����
�2

� 0

�2�

��2

�2�

��2

�2�

��2 + 2
�2�

����

�2�

����

�2�

����
−

�2�

��2 
 �2�

����
�2

−
�2�

��2 
 �2�

����
�2

−
�2�

��2 
 �2�

����
�2

� 0 �19�

Using energy relations �18�, this condition can be represented in
the form of the Drucker postulate �33�, i.e., the requirement that
the work of the generalized forces increments on small increments
of generalized displacements must be positive

dKd� + dMd� + dp0d� � 0

In the case of the uniaxial tension ��=0, p=0� there is a theo-
rem, proven for a compressible cylinder, having an arbitrary cross
section �17�, and for both hollow and solid circular cylinder of
incompressible material �20�. According to this theorem, there is
no instability for the stretched cylinder on the ascending branch of
the load-extension curve K���. Since for the uniaxial tension
K���=����� /��, then the requirement of strict convexity for the
function ���� is the sufficient condition for the equilibrium sta-
bility of a hollow cylinder under uniaxial tension. We must em-
phasize that this statement is valid for the case of a tensile axial
load only and incorrect for the cylinder under compression. From
the practical point of view a quite adequate accuracy for the cri-
terion of a potential energy convexity was found earlier �20� for
the stability problem of a stretched and twisted cylinder.

For the infinite hollow cylinder under tension, torsion, and in-
flation the result of a comparison between the stability region,
determined by solving the linearized boundary-value problem
�12�–�14�, and the convexity region for the potential energy � is
presented in Figs. 4 and 5. In these graphs the nonconvexity re-
gion �a region, for which the convexity condition �19� does not
hold� is backward-hatched. As shown in the graphs, for a zero

Fig. 3 Sections of the critical surfaces for the Biderman mate-
rial in the case of asymmetric instability

Fig. 4 Sections of the stability region for the Biderman
material

Fig. 5 Sections of the stability region for the power-law
material
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internal pressure �p=0� there is almost no difference between
these regions. Moreover, there is no instability in the convexity
region. For a nonzero pressure the cylinder instability in the con-
vexity region of the potential energy � is possible, but the differ-
ences between the stability region and the convexity region are
not too large. These results are independent of the hollow cylinder
geometry.

6 Concluding Remark
Within the framework of the bifurcational approach we have

investigated the stability problem for a hollow circular infinite
cylinder under tension, torsion, and inflation. The stability analy-
sis has been carried out on the basis of the exact three-
dimensional equations of the nonlinear elasticity for an isotropic
incompressible body. For two models of material �a Biderman
material and a power-law material� the critical surfaces and the
stability region in the space of the loading parameters have been
defined numerically. According to obtained results, to construct
the stability region in the case of a tensile axial load, it is suffi-
cient to consider the stability problem with respect to axisymmet-
ric perturbations �n=0� only. It has been determined that the sta-
bility region boundary consists of the critical surfaces segments,
which are obtained for different values of 
. For thin-walled hol-
low cylinders ���0.1� we have defined that the stability region in
the space of the parameters � ,�0 ,�0 is almost independent of a
wall thickness. By comparing the stability region and convexity
region for the potential energy per unit length �, as a function of
the axial stretching �, angle of twist �, and deformed inner radius
square �, we have determined that the condition of strict convex-
ity for the potential energy ��� ,� ,�� can be used as a suffi-
ciently accurate practical criterion of stability for the stretched
hollow cylinder under torsion and inflation. This condition can be
represented in the form of the Drucker postulate, i.e., the require-
ment that the work of the generalized forces increments on small
increments of generalized displacements must be positive.
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Dynamic Response
Characteristics of a Nonviscously
Damped Oscillator
The characteristics of the frequency response function of a nonviscously damped linear
oscillator are considered in this paper. It is assumed that the nonviscous damping force
depends on the past history of velocity via a convolution integral over an exponentially
decaying kernel function. The classical dynamic response properties, known for viscously
damped oscillators, have been generalized to such nonviscously damped oscillators. The
following questions of fundamental interest have been addressed: (a) Under what condi-
tions can the amplitude of the frequency response function reach a maximum value?, (b)
At what frequency will it occur?, and (c) What will be the value of the maximum ampli-
tude of the frequency response function? Introducing two nondimensional factors,
namely, the viscous damping factor and the nonviscous damping factor, we have provided
exact answers to these questions. Wherever possible, attempts have been made to relate
the new results with equivalent classical results for a viscously damped oscillator. It is
shown that the classical concepts based on viscously damped systems can be extended to
a nonviscously damped system only under certain conditions. �DOI: 10.1115/1.2755096�

1 Introduction
The characterization of dissipative forces is crucial for the de-

sign of safety critical engineering structures subjected to dynamic
forces. Viscous damping is the most common approach for the
modeling of dissipative or damping forces in engineering struc-
tures. This model assumes that the instantaneous generalized ve-
locities are the only relevant variables that determine damping.
Viscous damping models are used widely for their simplicity and
mathematical convenience, even though the energy dissipation be-
havior of real structural materials may not be accurately repre-
sented by simple viscous models. Increasing use of modern com-
posite materials, high-damping elements, and active control
mechanisms in the aerospace and automotive industries in recent
years demands sophisticated treatment of the dissipative forces for
proper analysis and design. It is well known that, in general, a
physically realistic model of damping in such cases will not be
viscous. Damping models in which the dissipative forces depend
on any quantity other than the instantaneous generalized velocities
are nonviscous damping models.

Recognizing the need to incorporate generalized dissipative
forces within the equations of motion, several authors have used
nonviscous damping models. Within the scope of linear models,
the damping force can, in general �1�, be expressed by

fd�t� =�
0

t

g�t − ��u̇���d� �1�

Bagley and Torvik �2�, Torvik and Bagley �3�, Gaul et al. �4� and
Maia et al. �5� have considered damping modeling in terms of
fractional derivatives of the displacements, which can be obtained
by properly choosing the damping kernel function g�t� in Eq. �1�.
This type of problem has also been treated extensively within the
viscoelasticity literature; see, for example, the books by Bland �6�
and Christensen �7� and references therein. Among various other
nonviscous damping models, the “Biot model” �8� or “exponential

damping model” is particularly promising and has been used by
many authors �9–14�. With this model, the damping force is ex-
pressed as

fd�t� = �
k=1

n

ck�
0

t

�ke
−�k�t−��u̇���d� �2�

Here, ck are the damping constants, �k are the relaxation param-
eters, n is the number of relaxation parameters required to de-
scribe the damping behavior, and u�t� is the displacement as a
function of time. In the context of viscoelastic materials, the
physical basis for exponential models has been well established;
see, for example, Ref. �15�. A selected literature review including
the justifications for considering the exponential damping model
may be found in Ref. �13�. Adhikari and Woodhouse �16� pro-
posed a few methods by which the damping parameters in Eq. �2�
can be obtained from experimental measurements.

Methods for the analysis of linear systems with damping of the
form �2� have been considered by many authors; for example
�1,9–13,17,18�. Although these publications provide excellent
analytical and numerical tools for the analysis of nonviscously
damped systems, most of the physical understandings are still
from the point of view of a viscously damped oscillator. In this
paper, we address the dynamic response characteristics of a non-
viscously damped oscillator with energy dissipation characteris-
tics given by Eq. �2� with n=1. The outline of the paper is as
follows. In Sec. 2, the equation of motion is introduced and the
exact analytical solutions of the eigenvalues are derived. The con-
ditions for sustainable oscillatory motion are discussed in Sec. 3.1.
The critical damping factors of a nonviscously damped oscillator
are discussed in Sec. 3.2. The frequency response function of the
system is derived in Sec. 4. The characteristics of the response
amplitude are discussed in Sec. 5. In Sec. 6, a simplified analysis
of dynamic response is proposed. Finally, our main findings are
summarized in Sec. 7.

2 Background
The equation of motion of the system with damping character-

istics given by Eq. �2� with n=1 can be expressed as
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mü�t� +�
0

t

c�e−��t−��u̇���d� + ku�t� = f�t� �3�

together with the initial conditions

u�0� = u0 and u̇�0� = u̇0 �4�

The system is shown in Fig. 1. Here, m is the mass of the oscil-
lator, k is the spring stiffness, f�t� is the applied forcing, and ���
represents a derivative with respect to time. Qualitative properties
of the eigenvalues of this system have been discussed in detail by
Adhikari �19�. Here, we review some basic results.

Transforming Eq. �3� into the Laplace domain, one obtains

s2mū�s� + sc� �

s + �
�ū�s� + kū�s� = f̄�s� + mu̇0 + �sm + c

�

s + �
�u0

�5�

where s is the complex Laplace domain parameter and ��� is the
Laplace transform of ���. For convenience, we introduce the con-
stants �n, �, and � as follows:

�n =	 k

m
� =

c

2	km
� =

�n

�
�6�

Here, �n is the undamped natural frequency, � is the viscous
damping factor, and � is the nonviscous damping factor. When
�→0, the oscillator is effectively undamped. When �→0, then
�→�, and the oscillator is effectively viscously damped. We will
use these limiting cases frequently to develop our physical under-
standings of the results to be derived in this paper. In the context
of multiple-degree-of-freedom dynamic systems, Adhikari and
Woodhouse �20� have proposed four nonviscosity indices in order
to quantify nonviscous damping. The nonviscous damping factor
� proposed here also serves a similar purpose. Using the constants
in �6�, Eq. �5� can be rewritten as

d̄�s�ū�s� = p̄�s� �7�

where the dynamic stiffness coefficient d̄�s� and the equivalent
forcing function p̄�s� are given by

d̄�s� = s2 + s2��n� �n

s� + �n
� + �n

2 �8�

and

p̄�s� =
f̄�s�
m

+ u̇0 + �s + 2��n
�n

s� + �n
�u0 �9�

The aim of a dynamic analysis is often to obtain the dynamic
response, either in the time domain or in the frequency domain.
For a single-degree-of-freedom �SDOF� oscillator, it is a relatively
simple task; one can either directly integrate Eq. �3� with the
initial conditions �4�, or alternatively can invert the coefficient
associated with ū�s� in Eq. �7�. Such an approach is not suitable

for multiple degree-of-freedom systems with nonproportional
damping and may not provide much physical insight. We pursue
an approach that involves eigensolutions of the oscillator. The
eigenvalues are the zeros of the dynamic stiffness coefficient and

can be obtained by setting d̄�s�=0. Therefore, using Eq. �8�, the
eigenvalues are the solutions of the characteristic equation:

�s3 + �ns2 + ���n
2 + 2��n

2�s + �n
3 = 0 �10�

In contrast to a viscously damped oscillator where one obtains a
quadratic equation.

The three roots of Eq. �10� can appear in two distinct forms: �a�
One root is real and the other two roots are in a complex conju-
gate pair, or �b� all roots are real. Case �a� represents an under-
damped oscillator, which usually arises when the “small damp-
ing” assumption is made. The complex conjugate pair of roots
corresponds to the “vibration” of the oscillator, while the third
root corresponds to a purely dissipative motion. Case �b� repre-
sents an overdamped oscillator in which the system cannot sustain
any oscillatory motion. For simplicity, we introduce a nondimen-
sional frequency parameter

r =
s

�n
� C �11�

and transform the characteristics of Eq. �10� to

�r3 + r2 + �� + 2��r + 1 = 0 �12�
or

r3 + �
j=0

2

ajr
j = 0 �13�

The constants associated with the powers of r are given by

a0 =
1

�
a1 = 1 + 2

�

�
a2 =

1

�
�14�

The cubic Eq. �13� can be solved exactly in closed form; see, for
example ��21� Sec. 3.8�. Define the following constants

Q =
3a1 − a2

2

9
=

�3�2 + 6�� − 1�
9�2 �15�

and

R =
9a2a1 − 27a0 − 2a2

3

54
= −

�9�2 − 9�� + 1�
27�3 �16�

From these, calculate the negative of the discriminant

D = Q3 + R2 =
1

27�4 ��4 + 6�3� + 2�2 + 12�2�2 − 10��

+ 1 + 8��3 − �2� �17�
and define two new constants

S = 	3 R + 	D and T = 	3 R − 	D �18�

Using these constants, the roots of Eq. �13� can be expressed by
the Cardanos formula as

r1 = −
a2

3
−

1

2
�S + T� + i

	3

2
�S − T� �19�

r2 = −
a2

3
−

1

2
�S + T� − i

	3

2
�S − T� �20�

and

r3 = −
a2

3
+ �S + T� �21�

These are the normalized eigenvalues of the system. The actual
eigenvalues, that is the solutions of Eq. �10�, can be obtained as

Fig. 1 A single-degree-of-freedom nonviscously damped os-
cillator with the damping force fd„t…=
0

t c�e−�„t−�…u̇„�…d�
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� j =�nrj, j=1,2 ,3. If the nonviscous damping factor � is zero,
Eq. �12� reduces to the quadratic equation

r2 + 2�r + 1 = 0 �22�
which, as expected, is the characteristic equation of a viscously
damped oscillator. For this special case, the two solutions of Eq.
�22� are given by

r1 = − � + i	1 − �2 r2 = − � − i	1 − �2 �23�
Since the nature of these solutions is very well understood, we
will compare the new results with them.

3 Characteristic of the Eigenvalues

3.1 Conditions for Oscillatory Motion. The conditions for
oscillatory motion have been discussed by Muravyov and Hutton
�10� and more recently by Muller �22� and Adhikari �19�. Here,
we briefly review the answers to the following questions of fun-
damental interest:

• Under what conditions can a nonviscously damped oscilla-
tor sustain oscillatory motions?

• Is there any critical damping factor for a nonviscously
damped oscillator so that, beyond this value, the oscillator
becomes overdamped?

For a viscously damped oscillator, the answer to the above ques-
tions is well known. From Eq. �23� it is clear that if the viscous
damping factor � is more than 1, then the oscillator becomes over-
damped and consequently it will not be able to sustain any oscil-
latory motions. This simple fact is no longer true for a nonvis-
cously damped oscillator.

Roots r1 and r2 in Eqs. �19� and �20�, respectively, will be in a
complex conjugate pair, provided S−T�0. The motion corre-
sponding to the complex conjugate roots r1 and r2 is oscillatory
�and decaying� in nature, while the motion corresponding to the
real root r3 is a pure nonoscillatory decay. Considering the expres-
sions of S and T in Eq. �18�, it is easy to observe that the system
can oscillate provided D�0. Therefore, the critical condition is
given by

D��,�� = 0 �24�

From the expression of D in �17�, this condition can be rewritten
as

8��3 + �12�2 − 1��2 + �6�3 − 10��� + �1 + 2�2 + �4� = 0

�25�

In Fig. 2, the surface D�� ,��=0 is plotted for 0	�	6 and 0
	�	0.5. This plot shows the parameter domain where the sys-
tem can have oscillatory motion. For a viscously damped oscilla-
tor, �=0, which is represented by the X-axis of Fig. 2. Along the
X-axis when ��1, the oscillatory motion is not possible, which is
well known. But the scenario changes in an interesting way for
nonzero � �i.e., for a nonviscously damped oscillator�. For ex-
ample, if ��0.1, the system can have oscillatory motion even
when ��2, which is more than twice the critical viscous damping
factor! Conversely, there are also regions where the system may
not have oscillatory motion even when �
1. Perhaps the most
interesting observation from Fig. 2 is that if � is more than about
0.2, then the oscillator will always have oscillatory motions, no
matter what the value of the viscous damping factor is. Therefore,
there is a critical value of �, say �c, below which the system will
always have an oscillatory motion. Similarly, there is a critical
value of �, say �c, above which the system will always have an
oscillatory motion. In the previous work �19�, the exact critical
values of � and � were obtained and the following basic result
was proved:

THEOREM 3.1. A nonviscously damped oscillator will have os-

cillatory motions if �
4 / �3	3� or ��1 / �3	3�.
In the next section, the precise parameter region, where oscil-

latory motion is possible, is defined using the concept of critical
damping factors.

3.2 Critical Damping Factors. In Fig. 3, we have �again�
plotted the surface D�� ,��=0 concentrating around the critical
values of � and �. The shaded region corresponds to the parameter
combinations for which oscillatory motion is not possible. A non-
viscously damped oscillator will always have oscillatory motions
if �
�c and/or ���c �parameter regions C1 and A in the figure�.
If �
�c, then it is possible to have overdamped motion even if
�
1, as in the parameter region B, shown in Fig. 3. When �

�c, there are two distinct parameter regions �shown as C1 and
C2 in the figure� in which oscillatory motion is possible. There-
fore, one can think of two critical damping factors for a nonvis-
cously damped oscillator.

Using the notations �L and �U, the oscillator will have over-
damped motion when �L
�
�U. We call �L the lower critical
damping factor and �U the upper critical damping factor.

To obtain the critical damping factors, it is required to solve
D=0 for �, which is a cubic equation in �. In the previous work

Fig. 2 The boundary between oscillatory and nonoscillatory
motion

Fig. 3 Critical values of � and � for oscillatory motion
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�19�, it was proved that the lower and the upper critical damping
factors of a nonviscously damped oscillator are given by

�L =
1

24�
�1 − 12�2 + 2	1 + 216�2 + cos��4� + �c�/3�
 �26�

and

�U =
1

24�
�1 − 12�2 + 2	1 + 216�2 + cos��c/3�� �27�

where

�c = arccos�1 − 5832�4 − 540�2

�216�2 + 1�3/2 � �28�

Equations �26� and �27� are plotted in Fig. 3. When �→�c, the
critical damping factors approach each other and eventually when
�=�c, both critical damping factors become the same and equal to
�c. The existence of two critical damping factors is a new concept
compared to a viscously damped oscillator. In the limiting case
when �→0, it can be verified that �L→1 and �U→�. This indeed
implies that a viscously damped oscillator has only one critical
damping factor, and that is �=1. These results can be summarized
in the following theorem:

THEOREM 3.2. When �
1 / �3	3�, a nonviscously damped os-
cillator will have oscillatory motions if and only if �� ��L ,�U�.

4 The Frequency Response Function
The results given in the previous section define the conditions

under which a nonviscously damped oscillator can sustain oscil-
latory motions. The rest of the paper is aimed at gaining insights
into the nature of the dynamic response. The frequency response
function of linear systems contains complete information regard-
ing the dynamic response. The direct computation of the fre-
quency response function of a SDOF system is a trivial task. To
gain further insight into the dynamic response characteristics, it is
often useful to express the frequency response function in terms of
the eigenvalues of the system. The aim of this section is to estab-
lish a connection to the results given in the previous section,
which gives the expression of the eigenvalues as a function of �
and �.

We begin with the normalized frequency response function

h̄�s�, which is defined as the solution of Eq. �7� with the forcing
function p̄�s�=1. Therefore, from Eq. �7� one obtains

h̄�s� =
1

d̄�s�
where d̄�s� = s2 + s2��n� �n

s� + �n
� + �n

2 �29�

Noting that d̄�s� has zeros at s=� j, j=1,2 ,3, where the eigenval-
ues � j =�nrj, the frequency response function can be conveniently
expressed by the pole-residue form as

h̄�s� = �
j=1

3
Rj

s − � j
�30�

Here, the residues

Rj = lim
s→�j

s − � j

d̄�s�
=

1

��d̄�s�/�s�s=� j

=
1

2

1

� j + ��n��n/��� j + �n��2

�31�

Because �1 and �2 appear in a complex conjugate pair, it is con-
venient to write �1=� and �2=�*, where ���* denotes the com-
plex conjugation. We denote the real eigenvalue �3=
. Using
these notations and substituting s=i�, the frequency response
function in Eq. �30� can be expressed as

h̄�i�� =
R�

i� − �
+

R�
*

i� − �* +
R


i� − 

�32�

where

R� =
1

2

1

� + ��n�1 + ���/�n��−2 R
 =
1

2

1


 + ��n�1 + ��
/�n��−2

�33�

For the special cases when the system is undamped ��=0�, or
viscously damped ��=0�, Eq. �32� reduces to its corresponding
familiar forms as follows:

• For undamped systems, �=0 and 
 does not exist. The ei-
genvalue � is purely imaginary so that �=i�n. From Eq.
�33�, one obtains R�=1 / �2i�n�. Substitution of these values
in Eq. �32� results in

h̄�i�� =
1

2i�n

1

i� − i�n
−

1

2i�n

1

i� + i�n

=
1

2i�n
� 1

i� − i�n
−

1

i� + i�n
� =

1

�n
2 − �2 �34�

• For viscously damped systems, �=0 and 
 does not exist.
The eigenvalue � can be expressed as

� = − ��n + i�d where �d = �n
	1 − �2 �35�

From Eq. �33�, one obtains R�=1 / �2�−��n+i�d+��n��
=1 / �2i�d�. Substituting these in Eq. �32�, one obtains

h̄�i�� =
1

2i�d

1

i� − �− ��n + i�d�
−

1

2i�d

1

i� − �− ��n − i�d�

=
1

2i�d
� 2i�d

���n + i��2 − �i�d�2� =
1

�n
2 + 2i���n − �2

�36�

In the time domain, the impulse response function can be ob-

tained by taking the inverse Laplace transform of h̄�s� as

h�t� = Re� e�t

� + ��n�1 + ���/�n��−2� +
1

2

e
t


 + ��n�1 + ��
/�n��−2

�37�

The first term in Eq. �37� is oscillating in nature because � is
complex, while the second term is purely decaying in nature as 

is real and negative.

It is convenient to define a nondimensional driving frequency
parameter

�̃ =
�

�n
�38�

Substituting s=i�=i�̃�n in Eq. �29�, one has

h̄�i�� =
1

�n
2� 1

− �̃2 + 2i��̃�1/i��̃ + 1� + 1
� �39�

Separating the real and imaginary parts, the nondimensional fre-
quency response function can be expressed as

G�i�� = �n
2h̄�i�� =

1 + i��̃

�1 − �̃2� + i�̃�2� + � − ��̃2�
�40�

From Eq. �40�, the amplitude of vibration can be obtained as
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�G�i��� = 	G�i��G*�i�� =	 1 + �2�̃2

�1 − �̃2�2 + �̃2�2� + � − ��̃2�2

�41�
Figure 4 shows the amplitude of the nondimensional frequency
response �G�i��� as a function of the normalized frequency � /�n.
The numerical values of � and � are selected such that Fig. 4
represents the general overall behavior. In the static case, that is
when � /�n=0, the amplitude of vibration is 1. Therefore, as the
frequency changes, the values of �G�i��� in Eq. �41� can be re-
garded as the amplification factors.

When �
�c=1 / �3	3�, the frequency response function is
similar to that of the viscously damped system. This is expected
because the value of � is relatively small. The amplitude of the
peak response of the nonviscously damped system is more than
that of the viscously damped system. In general, the higher the
values of �, the higher the values of the amplitudes of the peak
response. Another interesting fact can be seen from Fig. 4 is that
the dynamic response amplitude has a peak even when ��1 /	2.
For example, in Fig. 4�d�, the viscously damped system does not
have any response peak as �=1 �critical viscous damping�. How-
ever, for the nonviscously damped system, the response amplitude
has a peak when �=1 or �=0.75, but not if �
0.5. These inter-
esting response behaviors are explored further in the next section.

5 Characteristics of the Response Amplitude
The maximum vibration amplitude of a linear system near the

resonance is of fundamental engineering interest because it can
lead to damage or even failure of a structure. For a viscously
damped system, it is well known that if �
1 /	2, then the fre-
quency response function has a peak when � /�n=	1−2�2. At this
frequency, the amplitude of the maximum dynamic response is
given by

�G�max =
1

2�	1 − �2
�42�

Recently, Vinokur �23� derived a closed-form expression of the
frequency point where the vibration amplitude of a hysteretically
damped system reaches its maximum value. We are interested in
the equivalent results for nonviscously damped systems. Specifi-
cally, we ask the following questions of fundamental engineering
interest:

• Under what conditions can the amplitude of the frequency
response function reach a maximum value?

• At what frequency will it occur?
• What will be the value of the maximum amplitude of the

frequency response function?

Fig. 4 Amplitude of the nondimensional frequency response �G„i�…� as a function of the normalized frequency � /�n for
different values of � and �. „a… �=0.1. „b… �=0.25. „c… �=0.5. „d… �=1.0.

Journal of Applied Mechanics JANUARY 2008, Vol. 75 / 011003-5

Downloaded 04 May 2010 to 171.66.16.43. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



5.1 The Frequency for the Maximum Response
Amplitude. For notational convenience, denoting

x = �̃2 =
�2

�n
2 �43�

from Eq. �41�, the amplitude of the dynamic response can be
expressed as

�G�2 =
1 + �2x

�1 − x�2 + x�2� + � − �x�2 �44�

For the maximum value of �G�, we set

��G�2

�x
= 0 �45�

or

2x2�2 − 2�2x − 2�3�x2 − �4x2 + �4x3 − 1 + x + 2�2 + 2�� − 4�x�

��1 − x�2 + x�2� + � − �x�2�2

= 0 �46�

At the solution point, it is also required that

�2�G�2

�x2 
 0 �47�

that in turn implies satisfying

3�6x5 + �9�4 − 12��5 − 6�6�x4 + �9�2 + 12�2�4 − 18�4 − 40�3�

+ 12��5 + 3�6�x3 + �60�2�2 + 9�4 + 3 + 60�3� − 24��

− 18�2�x2 + �9�2 − 24�3� − 48�3� + 12�2 + 36�� − 6

− 72�2�2�x + 3 + 4�3� − 16�2 − 12�� + 20�2�2 + 32�3�

+ 16�4 
 0 �48�

The numerator of Eq. �46� is a cubic equation in x and can be
expressed as

x3 + �
j=0

2

cjx
j = 0 �49�

where

c0 =
2�� + 2�2 − 1

�4 c1 =
1 − 2�2 − 4��

�4 c2 =
2 − 2�� − �2

�2

�50�
The three roots of Eq. �49� can either be all real or one real and
one complex conjugate pair. The nature of the roots depends on
the discriminant, which can be obtained from the constants

Qx =
3c1 − c2

2

9
= −

1

9�4 �1 + 2�� + �2�2 �51�

and

Rx =
9c2c1 − 27c0 − 2c2

3

54

=
1

27�6 �8�3�3 + �12�4 − 15�2��2 + �− 15�3 − 21� + 6�5��

+ 3�4 + 3�2 + 1 + �6� �52�
as

Dx = Qx
3 + Rx

2 = −
�

27�11�16�4�4 + �13�3 + 40�5��3

+ �18�4 + 36�6 − 18�2��2 + �− 13� − 12�3 + 15�5 + 14�7��

+ 2 + 8�2 + 12�4 + 2�8 + 8�6� �53�

If Dx�0, then Eq. �49� has one complex conjugate pair and only
one real solution. It turns out that when Dx�0, the real solution is
always negative and, therefore, is not of interest in this study.
However, when Dx
0, all the roots of Eq. �49� become real. We
define an angle � as

cos��� = �Rx/	− Qx
3� =

8�3�3 + �12�4 − 15�2��2 + �6�5 − 15�3 − 21��� + 3�4 + 3�2 + 1 + �6

�1 + �2 + 2���3 �54�

Using �, the three real solutions of Eq. �49� can be given using
Dickson’s formula �24� as

x1 = 2	− Qx cos��

3
� − c2/3 �55�

x2 = 2	− Qx cos�2� + �

3
� − c2/3 �56�

and

x3 = 2	− Qx cos�4� + �

3
� − c2/3 �57�

Among the above three solutions, we need to choose a positive
solution that also satisfies Eq. �48�. From numerical calculations,
it turns out that only x1 in Eq. �55� satisfies the condition in Eq.
�48�. Substituting Qx from �51� and c2 from �50� into Eq. �55�, the
normalized excitation frequency for which the amplitude of the
frequency response function reaches its maximum value is given
by

xmax =
1

3�2 ��1 + 2�� + �2��2 cos��/3� + 1� − 3
 �58�

For convenience, we define the notation �max as

xmax =
�max

2

�n
2 �59�

we have

�max =
�n

�
	�1 + 2�� + �2��2 cos��/3� + 1�/3 − 1 �60�

This is the extension of the well known result for viscously
damped systems for which �max=�n

	1−2�2.
Figure 5 shows the contours of �max /�n obtained from Eq.

�60�, as a function of � and �. The value of �max is the frequency
where the amplitude of the frequency response function reaches
its maximum value.

For a better understanding, Fig. 5 is divided into three regions.
In region A where ��0.5 and � is small, �max /�n
1. This im-
plies that in this parameter region, the frequency at which the
amplitude of the frequency response function reaches its maxi-
mum appears below the system’s natural frequency. Contour line 0
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separates the region B from A and C. In region B, ��0.5 and �

�1 /	2 and the amplitude of the frequency response function
does not have any maximum value. This implies that within this
parameter region, it is not possible to find a positive real solution
of the cubic Eq. �49� and the system response decays gradually, as
in 4�d� for �=0 and �=0.25. The shaded portion inside region B
�shown before in Figs. 2 and 3� corresponds to the parameter
region where the system cannot have any oscillatory motions.
Clearly, within this overdamped region, it is not possible for the
dynamic response amplitude to reach a maximum value. In region
C, where ��1 and ��0.5, observe that �max /�n�1. The con-
tour plots in Fig. 5 also show a general trend that �max /�n in-
creases for increasing values of � and �.

An interesting contour line in Fig. 5 is line 1. For these param-
eter combinations of � and �, the frequency at which the ampli-
tude of the frequency response function reaches the maximum
value coincides exactly with the undamped natural frequency.
This surprising observation implies that the system may be
heavily damped ���0.5�, but still can have a peak at �n, for some
appropriate values of �. Another interesting fact observed from
Fig. 5 is that there exist a critical value of �, say �mL, below which
the amplitude of the frequency response will always have a maxi-
mum value for any values of �. Similarly, there is also a critical
value of �, say �mU, above which the amplitude of the frequency
response will always have a maximum value for any values of �.
The explanation of these observations, including the derivation of
the exact values of �mL and �mU, are considered in the next sub-
sections.

5.1.1 Critical Parameter Values for the Maximum Response
Amplitude. Suppose a general complex solution of Eq. �49� is
expressed as

x = � + i� �61�

for arbitrary � ,��R. Substituting x from the above equation in
�49� and separating the real and imaginary parts, we have

− 2�4�3 + �4�3� + 2�4 − 4�2��2 + �6�4�2 − 2 + 4�2 + 8����

− 4�� − �4�3� + 2�4 − 4�2��2 − 4�2 + 2 = 0 �62�

and

− 6�4�2� + �− 8��2 + 8��3� + 4��4�� + 2�4�3 + 4��2 + 8���

− 2� = 0 �63�

Eliminating � from Eqs. �62� and �63� and substituting �=0 �be-
cause we are interested only in the real solution� in the resulting
equation, after some algebra one has

M��,�� = 0 �64�

where

M��,�� = 16�3�3 + �24�4 − 3�2��2 + �12�5 − 15� − 3�3�� + 2

+ 6�2 + 6�4 + 2�6 �65�

The parameters � and � must satisfy Eq. �64� in order to have a
real solution. Therefore, in view of Fig. 5, the values of �mU and
�mL can be obtained from the following optimization problems,
respectively:

�mU: max � subject to M��,�� = 0 �66�

and

�mL: min � subject to M��,�� = 0 �67�

First, consider the constrained optimization problem in Eq. �66�.
Using the Lagrange multiplier �1, we construct the Lagrangian

L1��,�� = � + �1M��,�� �68�

The optimization problem shown in Eq. �66� can be solved by
setting

�L1

��
= 0 �69a�

and

�L1

��
= 0 �69b�

Differentiating the Lagrangian in Eq. �68�, the above two condi-
tions result

�1�48�3�2 + �− 6�2 + 48�4�� − 15� + 12�5 − 3�3� = 0 �70�
and

1 + �1�48�2�3 + �− 6� + 96�3��2 + �− 15 + 60�4 − 9�2�� + 12�

+ 24�3 + 12�5� = 0 �71�

Because the Lagrange multiplier �1 cannot be zero, solving Eq.
�70� one has

� = −
1 + �2

2�
�72a�

or

� =
5 − 4�2

8�
�72b�

Ignoring the first solution, which is always negative, and substi-
tuting �= �5−4�2� /8� in the constraint Eq. �64� and simplifying
we have

�4 + 2�2 − 11/16 = 0 �73�
There is only one feasible solution to the above equation, which
can be obtained as

�mU = 1
2
	3	3 − 4 = 0.5468 �74�

For this value of �, the value of � can be obtained from Eq. �72b�
as

�mU = 3
4
	�12	3 − 6�/11 = 0.8695 �75�

The point ��mU ,�mU� is shown by a dot in Fig. 5. From this plot,
it can be observed that if ���mU, then there always exists a

Fig. 5 Contours of the normalized excitation frequency corre-
sponding to the maximum value of the amplitude of the fre-
quency response function �max/�n as a function of � and �
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driving frequency for which the amplitude of the frequency re-
sponse function will reach a maximum value.

The value of �mL can be obtained from the optimization prob-
lem �67� by constructing the Lagrangian

L2��,�� = � + �2M��,�� �76�

where �2 is the Lagrange multiplier. Following a similar proce-
dure, it can be shown that the optimal value of � is given by

�mL = 1
2
		5 − 1 = 0.5559 �77�

For this value of �, the value of � can be obtained as

�mL = 1
2
	2	5 − 4 = 0.3436 �78�

The point ��mL ,�mL� is shown by a dot in Fig. 5. From this plot, it
can be observed that if �
�mL, then there always exists a driving
frequency for which the amplitude of the frequency response
function will reach a maximum value. From the preceding discus-
sions, we have the following fundamental results:

THEOREM 5.1. The amplitude of the frequency response function
of a nonviscously damped oscillator can reach a maximum value

if �

1
2
		5−1 or ��

1
2
	3	3−4.

THEOREM 5.2. If �

1
2
		5−1 or ��

1
2
	3	3−4, then the am-

plitude of the frequency response function of a nonviscously
damped oscillator reaches a maximum value when the driving
frequency �=�n�	�1+2��+�2���2 cos�� /3�+1� /3−1�� /�.

5.1.2 Parameter Relationships for �max=�n. The contour line
�max /�n=1 in Fig. 5 is of special interest. For these particular
parameter combinations, the maximum amplitude of the fre-
quency response function of the damped system occurs exactly at
the undamped natural frequency. This surprising fact occurs only
in a nonviscously damped system and it is not possible for vis-
cously damped systems. For a more detailed analysis, Fig. 6 again
shows the contours of �max /�n when �	1 and �	1.

In Fig. 6, when �=0, then �max /�n can be equal to 1 if and
only if �=0 �that is, when the system is undamped�. The condi-
tions for �max /�n=1 can be obtained by enforcing xmax=1. Thus,
substituting x=1 in Eq. �49� and considering that ��0, we have

� + �3 − � = 0 �79�

Solving this, the required condition can be given by

� = ��1 + �2� �80�

when � is known, or

� = ��2 − 12�/6� where � = 	3 108� + 12	12 + 81�2 �81�

when � is known. Equation �80� is plotted in Fig. 6. The same
curve can also be obtained by plotting Eq. �81�. One interesting
fact emerging from Fig. 6 is that beyond certain values of � and �,
the maximum dynamic response amplitude cannot occur at
�max /�n=1. To obtain these limiting values, we substitute � from
Eq. �80� into the condition of real solution given in Eq. �64�. After
some algebra, the resulting equation becomes

16�12 + 72�10 + 105�8 + 45�6 − 15�4 − 9�2 + 2 = 0 �82�

The only positive real solution of the above equation is

� = 1/2 �83�

Substituting this value � in Eq. �80�, one obtains

� = 5/8 �84�

The point �5 /8,1 /2� is shown in Fig. 6 by a dot. From this dia-
gram, it is clear that �max /�n can be equal to one, if and only if
�
5 /8 and �
1 /2. When xmax=1, the maximum value of the
amplitude of the frequency response function can be obtained
from Eq. �44� as

�G�xmax=1 =
	1 + �2

2�
�85�

From this discussion, we have the following useful results:
THEOREM 5.3. The maximum amplitude of the frequency re-

sponse function (if it exists) of a nonviscously damped oscillator
will occur below the undamped natural frequency if and only if
�
5 /8 and �
1 /2.

THEOREM 5.4. The maximum amplitude of the frequency re-
sponse function (if it exists) of a nonviscously damped oscillator
will occur above the undamped natural frequency if ��5 /8 or
�
��1+�2� and ��1 /2 or �� ��2−12� /6�.

Another curious feature of Fig. 6 is the flatness of �max /�n
around the contour line 1. This implies that for a wide range of
parameter combinations, it is possible to observe a damped reso-
nance very close to the undamped natural frequency. For a vis-
cously damped system, this can happen only if the damping is
very small ���0.05�. But for a nonviscously damped system, this
can happen even when � is as large as 0.6.

It was shown that the amplitude of the frequency response func-
tion cannot reach a maximum value for some combinations of �
and � �the parameter region B in Figs. 5 and 6�. Considering
small values of � and � so that �	�mL and �	�mL, we aim to
derive a simple analytical expression for the existence of �G�max.
Because x= �̃2, the condition for existence of the maximum am-
plitude of the frequency response function can be expressed as

xmax � 0 �86�

Therefore, the critical condition can be obtained by substituting
x=0 in Eq. �49� as

1 − 2�� − 2�2 = 0 �87�

Solving this equation for �, the condition for existence of �G�max
can be expressed by

� 

1
2 �	2 + �2 − �� �88�

when

Fig. 6 Contours of the normalized excitation frequency corre-
sponding to the maximum value of the amplitude of the fre-
quency response function, �max/�n, as a function of � and �.
Equations corresponding to �max/�n=0 „dashed line… and
�max/�n=1 „dotted line… are shown in the figure. These equa-
tions are valid in the region A only. The function � is defined in
Eq. „81….
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� 	
1
2
	2	5 − 4 �89�

For the special case when only viscous damping is present, sub-
stituting �=0 in Eq. �88�, one obtains the required condition as
�	1 /	2, which is well known for viscously damped systems.
This condition can alternatively be expressed in terms of � by
solving Eq. �87� for � as

� 

1 − 2�2

2�
�90�

when

� 	
1
2
		5 − 1 �91�

The validity of Eqs. �88� and �90� can be verified from Fig. 6.
When �	�mL and �	�mL, Eqs. �88� and �90� match perfectly
with the zero line obtained from the expression of xmax in Eq.
�58�. Observe that these equations become invalid when ���mL
and ���mL. From this discussion, we have the following result:

THEOREM 5.5. If �	
1
2
		5−1 and �	

1
2
	2	5−4, the amplitude

of the frequency response function of a nonviscously damped os-
cillator can reach a maximum value if and only if �
 �	2+�2

−�� /2 or �
 �1−2�2� /2�.

5.2 The Amplitude of the Maximum Dynamic Response.
The maximum value of the amplitude of the frequency response
function is a useful quantity because it can be related to the struc-
tural failure and design. Figure 7 shows the contours of the maxi-
mum amplitude of the normalized frequency response function
�G�max as a function of � and �. The values of �G�max are calculated
from Eq. �44� by substituting xmax from Eq. �58� in place of x.
This diagram is divided into four regions for discussions. In re-
gion A, where �
�mL, the amplitude of the frequency response
function of the system will always have a maximum value. The
values of �G�max are higher for smaller values of �, as expected. A
useful fact to be noted is that for a fixed value of �, the value of
�G�max is higher for higher values of �. This can also be verified
from Fig. 4. This fact may have undesirable consequences, espe-
cially if � is large. In region B, the amplitude of the frequency
response function does not have a maximum value. The shaded
portion inside region B �shown before in Figs. 2 and 3� corre-
sponds to the parameter region, where the system cannot have any
oscillatory motions. Clearly, within this overdamped region, it is
not possible for the dynamic response amplitude to reach a maxi-
mum value. In region C where ���mU, the amplitude of the

frequency response function of the system will always have a
maximum value, but the value of the maximum response is less
than 1. In region D, observe that ���mU, but unlike region C, the
value of the maximum response is more than 1. In general, for a
fixed value of �, the values of �G�max increase with the increasing
values of �. The numerical values of �G�max in regions C and D
are, however, smaller compared to those in region A. From this
discussion, we have the following general result:

THEOREM 5.6. For a given value of �, the maximum amplitude
of the frequency response function �if it exists� of a nonviscously
damped oscillator increases with increasing values of �.

The contour line “1” in Fig. 7 is of special interest because
�G�max�1 implies that the maximum dynamic response amplitude
is more than the static response. For the parameter combinations
in the left side of the contour line 1, the amplitude of the maxi-
mum dynamic response is always greater than 1. In the the region
to the right, the amplitude of the maximum dynamic response is
less than the static response amplitude of the system. The exact
parameter combinations for which �G�max is more than 1 is con-
sidered next.

Substituting xmax from Eq. �58� in the expression of �G�2 in Eq.
�44�, we can obtain the expression of �G�max

2 . Equating the result-
ing expression to 1 and simplifying, we have

�8�3�3 + �12�2 + 12�4��2 + �12�3 + 6� + 6�5�� + 3�2 + 1 + �6

+ 3�4��8 cos3��/3� − 12 cos2��/3�� + 18�8�2�2 + �− 2�5 + 4�

+ 4�3�� − �4 − �6�cos��/3� + 32�3�3 + �48�4 + 12�2��2

+ �− 48� + 6�5 − 24�3�� + 4 + 3�4 − 5�6 + 12�2 = 0 �92�

This is a cubic equation in cos�� /3� and it can be solved exactly
to obtain

cos��/3� =
1 − �� − �2/2
1 + �2 + 2��

�93�

or

cos��/3� =
�2 + 2�� + �1 ± 3��/4

1 + �2 + 2��
�94�

where

� = 	4�4 + 4�2 − 8�� + 1 �95�

Among the above three solutions, any one of the two solutions
given in Eq. �94� turns out be more useful. In order to obtain the
relationship between � and � so that �G�max=1, it is required to
relate the expression of cos�� /3� in Eq. �94� to the expression of
cos��� in Eq. �54�. Using the identity

cos��� = 4 cos3��/3� − 3 cos��/3� �96�

and substituting the expression of cos��� from Eq. �54� and
cos�� /3� from Eq. �94�, we have

4�4� − ����2 + �2� − 4�2� − 8�4 − 2�� − 4�3 − � − 2�3� − 4�5

− �� = 0 �97�

or

� = −
�8�4 + 2�� + 4�5 + 4�3 + � − 16�2�

4�2� + �4�2 − 2�� + 2�3 + �
�98�

Equating the right-hand sides of Eqs. �95� and �98� and simplify-
ing we have

16�4�2 + �14� − 8�5 + 24�3��3 + �− 4�2 − 8�4 − 2 − 16�6��2

− �9� + 14�3 + 8�7 + 12�5�� + 1 + 5�2 + 8�4 + 4�6 = 0

�99�

The two real and positive solutions of � of the preceding equation
are given by

Fig. 7 Contours of the maximum amplitude of the normalized
frequency response function �G�max as a function of � and �
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� = �	2 + �2 − ��/2 �100�
or

� = �4�4 + 4�2 + 1�/8� �101�

If the expression of cos��� in Eq. �93� was used in place of that in
Eq. �94�, then one would obtain only the condition in Eq. �100�.
The expression of cos��� in Eq. �94� was selected because it pro-
duces more general results. Interestingly, the condition given in
Eq. �100� was also identified as the condition for the existence of
the maximum value of the frequency response function in Eq.
�88�. The value of � given in Eqs. �100� and �101� are shown in

Fig. 7. Equation �100� is valid when �	
1
2
	2	5−4 and Eq. �101�

is valid when ��
1
2
	2	5−4. From this analysis, we have the

following fundamental result:
THEOREM 5.7. The maximum amplitude of the normalized fre-

quency response function of a nonviscously damped oscillator will
be more than 1 if and only if �
 �	2+�2−�� /2 when �

	
1
2
	2	5−4 and �
 �4�4+4�2+1� /8� when ��

1
2
	2	5−4.

From this result, one practical question that naturally arises is,
What is the critical value of � below which the maximum ampli-
tude of the normalized frequency response function will always be
more than 1? To answer this question, we look for the minimum
value of � given by Eq. �101�. Differentiating Eq. �101� with
respect to �, the optimal value can be obtained from

4�2 + 12�4 − 1

8�2 = 0 �102�

The only real and positive solution of this equation is

� =
1
	6

�103�

Substituting this value of � in Eq. �101�, the optimal value of �
can be obtained as

� = 2	6/9 �104�
From this discussion we have the following theorem:

THEOREM 5.8. The maximum amplitude of the normalized fre-
quency response function of a nonviscously damped oscillator will
be more than 1 if �
2	6 /9.

The converse statement of Theorem 5.8 is, however, not always
true. The value of �G�max can be more than 1 even if ��2	6 /9, as
can be seen in region C in Fig. 7.

6 Simplified Analysis of the Frequency Response
Function

Dynamic characteristics of the frequency response function of a
nonviscously damped SDOF system have been elucidated in the
previous section. The frequency at which the amplitude of the
frequency response function reaches its maximum value can be
obtained from Eq. �58�. Although this is an exact expression, it is
difficult to gain much physical insight due to its complexity. Here,
we derive some simple expressions considering that � and � are
small.

In Fig. 6, it was noted that for a wide range of values of � and
�, the amplitude of the frequency response function reaches its
maximum value when the normalized excitation frequency is
close to 1. For this reason, we assume that

xmax = 1 − � �105�

Substituting this in place of x in Eq. �49� and simplifying, one
obtains:

�4�3 + �− 2�4 + 2�3� − 2�2��2 + ��4 + 2�2 − 4�3� − 4�� + 1��

+ 2�� + 2�3� − 2�2 = 0 �106�

This is a cubic equation in �, which needs to be solved to obtain

the frequency where �G�2 reaches its maximum value. Since � is
expected to be small for small values of � and �, neglecting the
coefficients associated with �2 and �3 in Eq. �106� and solving the
resulting linear equation we obtain

� �
2�2 − 2���1 + �2�

�1 + �2��1 + �2 − 4���
�107�

Substituting � in Eq. �105�, the frequency corresponding to the
maximum value of the amplitude of the frequency response func-
tion can be approximately obtained as

�̃max = 	xmax =
�max

�n
�	1 −

2�2 − 2���1 + �2�
�1 + �2��1 + �2 − 4���

�108�
For the special case when only viscous damping is present, sub-
stituting �=0 in Eq. �108�, one obtains �̃max=	1−2�2, which is
well known for viscously damped systems.

Substituting x=xmax from �105� into the expression of �G�2 in
Eq. �44� and retaining only up to quadratic terms in �, one has

�G�max
2 �

1 + �2 − �2�

4�2 + �4�� − 4�2�� + ��2 + 1 − 4����2 �109�

Substituting � from �107� into the preceding equation and retain-
ing only up to cubic terms in �, one has

�G�max �
1

2�
	 �1 + �2�

�1 + 2�2�
�1 − 4�� + �3 − 2�2��2 − 6�3��

�1 − 2�� − �2�
�110�

For the special case when only viscous damping is present, sub-
stituting �=0 in Eq. �110� results in the exact corresponding ex-
pression �G�max=1 / �2�	1−�2�, as given in Eq. �42�. To verify the
accuracy of the approximate formulas �108� and �110�, we calcu-
late the percentage error with respect to the exact solutions ob-
tained in the previous section. The percentage error is calculated,
for example, as

100 �
��̃max�exact − ��̃max�approx

��̃max�exact

�111�

Figures 8 and 9, respectively, show the contours of percentage
errors arising due to the use of approximate Eqs. �108� and �110�.

For �̃max calculated from Eq. �108�, the error is less than 2%
when � ,�	0.5. The error in the calculation of �G�max from Eq.

Fig. 8 Contours of percentage error in the approximate calcu-
lation of �max/�n from Eq. „108… as a function of � and �
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�110� is somewhat more. When � ,��0.5, the error is close to
10%. From Fig. 9, it can be observed that the error in the calcu-
lation of �G�max increases with the increasing values of �, but it is
relatively insensitive with respect to �.

The approximate expressions �108� and �110� will break down
if ���mL and ���mU. For such parameter values, it is not pos-
sible to extend a perturbation type method based on a viscous
damped system, as proposed here. Nevertheless, if a system is
moderately nonviscously damped �say �
0.5�, the dynamics can
be explained using the proposed approximations �108� and �110�.

7 Summary and Concluding Remarks
Dynamic response characteristics of a nonviscously damped

linear single-degree-of-freedom oscillator have been discussed.
The nonviscous damping force was expressed by a viscoelastic
type exponentially fading memory kernel. It was shown that the
dynamic response properties of the oscillator are governed by two
nondimensional factors; namely, the viscous damping factor � and
the nonviscous damping factor �. The system considered reduces
to the classical viscously damped oscillator when the nonviscous
damping factor is zero. Several fundamental properties that char-
acterize the dynamic response of a nonviscously damped oscilla-
tor have been discovered. A nonviscously damped oscillator has
three eigenvalues, one of which is always nonoscillating in nature.
The conditions for the occurrence of the maximum value of the
amplitude of the dynamic response were reviewed. The character-
istics of the driving frequency corresponding to the maximum
amplitude of the frequency response function and the value of the
maximum response amplitude were discussed in detail. The main
findings of the paper are:

1. A nonviscously damped oscillator will have oscillatory mo-
tions if �
4 / �3	3� or ��1 / �3	3�.

2. If �
1 / �3	3�, the oscillator will have oscillatory motions if
and only if �� ��L ,�U�. �L and �U given in Eqs. �26� and
�27� are the lower and upper critical damping factors, re-
spectively.

3. The amplitude of the frequency response function of a non-
viscously damped oscillator can reach a maximum value if

�

1
2
		5−1 or ��

1
2
	3	3−4.

4. If �

1
2
		5−1 or ��

1
2
	3	3−4, then the amplitude of the

frequency response function of a nonviscously damped os-
cillator reaches a maximum value when the driving fre-
quency �=�n�	�1+2��+�2��2 cos�� /3�+1� /3−1
 /�.

5. The maximum amplitude of the frequency response function
�if it exists� of a nonviscously damped oscillator will occur
below the undamped natural frequency if and only if �

5 /8 and �
1 /2.

6. The maximum amplitude of the frequency response function
�if it exists� of a nonviscously damped oscillator will occur
above the undamped natural frequency if ��5 /8 or �

��1+�2� and ��1 /2 or �� ��2−12� /6�.

7. If �	
1
2
		5−1 and �	

1
2
	2	5−4, the amplitude of the fre-

quency response function of a nonviscously damped oscilla-
tor can reach a maximum value if and only if �
 �	2+�2

−�� /2 or �
 �1−2�2� /2�.
8. For a given value of �, the maximum amplitude of the fre-

quency response function �if it exists� of a nonviscously
damped oscillator increases with increasing values of �.

9. The maximum amplitude of the normalized frequency re-
sponse function of a nonviscously damped oscillator will be
more than 1 if and only if �
 �	2+�2−�� /2 when �

	
1
2
	2	5−4 and �
 �4�4+4�2+1� /8� when �

�
1
2
	2	5−4.

10. The maximum amplitude of the normalized frequency re-
sponse function of a nonviscously damped oscillator will
be more than 1 if �
2	6 /9.

Using these results, one can understand the nature of the dynamic
response without actually solving the problem. These concepts
will be particularly useful in dealing with multiple-degree-of-
freedom systems. The studies reported in this paper show that the
classical concepts based on viscously damped oscillators can be
extended to nonviscously damped systems only under certain con-

ditions. In general, if ��
1
2
	3	3−4, the dynamic response char-

acteristics will be significantly different from a classical viscously
damped oscillator. The results derived in this paper are expected
to be valid for a proportionally damped multiple-degree-of-
freedom system with a single exponential kernel. However, formal
results are necessary in this direction. Further research is needed
to extend these results to systems with multiple exponential ker-
nels and nonproportional damping.
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Analytical Solutions for
Translational Motion of
Spinning-Up Rigid Bodies Subject
to Constant Body-Fixed Forces
and Moments
The problem of a spinning, axisymmetric, or nearly axisymmetric rigid body subject to
constant body-fixed forces and moments about three axes is considered. Approximate
closed-form analytical solutions are derived for velocity and for the transverse displace-
ment. The analytical solutions are valid when the excursion of the spin axis with respect
to an inertially fixed direction is small (which is usually the case for spin-stabilized
spacecraft and rockets). Numerical simulations confirm that the solutions are highly
accurate when applied to typical motion of a spacecraft, such as the Galileo.
�DOI: 10.1115/1.2755110�

1 Introduction
In rigid-body dynamics, there is a rich history of analytical

solutions, much of which is well represented in the treatise by
Leimanis �1�. The analytical work on rocket and spacecraft prob-
lems goes back to Rosser �2� and continues to modern works on
spacecraft dynamics �1,3–52�. The early dynamicists had no ac-
cess to computers and devoted great effort into finding integrals of
the motion and to reducing the dynamics problem to “quadrature
integrals.” The idea of a quadrature integral is to find the square
area under a given curve or function. Once a problem has been
reduced to quadratures, it is possible to tabulate its value over the
range of integration. Such tabulation could be accomplished by
simple numerical integrations that can be made arbitrarily accu-
rate. Mathematical handbooks are replete with examples of fa-
mous quadrature integrals, such as Jacobian elliptic functions,
Fresnel integrals, Bessel functions, and error functions.

One of the advantages of a closed-form analytical solution is to
help scientists and engineers to perform parametric studies. Al-
though it is straightforward to numerically solve the equations of
motion governing a rigid body subject to moments and forces, it is
not easy to determine how uncertainties in geometric parameters,
in mass properties, and in related parameters affect the solution
and the final conditions. Longuski and Kia �26� provide an ex-
ample of such a study that is facilitated by the availability of an
analytical solution for the motion of the angular momentum vec-
tor. �Their study took advantage of the fact that the final state of
the angular momentum vector is known from the analytical solu-
tion, and hence, no numerical integration is required to determine
perturbed final states due to change in a variety of parameters,
such as the mass properties, the applied torques, and the initial
conditions. When the time of the final state is long, the power of
this approach is significant.� In addition, the displacement solution
may be important during formation flying, operations near a
shuttle or a space station, and in maneuver analysis.

In this paper, we use the results of Ayoubi and Longuski �50,51�
to find the analytical solutions for the transverse velocity and dis-
placement of a spinning rigid body. We assume that the body-

fixed forces and moments, and mass properties are constant. Thus
for axisymmetric or nearly axisymmetric rigid bodies, the spin
rate increases linearly with time. In addition, it is assumed that the
spin axis of the rigid body corresponds to either the maximum or
minimum principal moment of inertia. We present approximate
closed-form solutions for transverse velocity and displacement
and outline the corresponding solution for axial velocity. The re-
sults are valid for axisymmetric, nearly axisymmetric, and under
certain conditions, for asymmetric rigid bodies.

2 Euler’s Equations of Motion
The motion of a rigid body is governed by Euler’s equations of

motion �53�, which can be written as

�̇x�t� =
Mx

Ix
− � Iz − Iy

Ix
��y�z �1�

�̇y�t� =
My

Iy
− � Ix − Iz

Iy
��z�x �2�

�̇z�t� =
Mz

Iz
− � Iy − Ix

Iz
��x�y �3�

where �x, �y, and �z are components of the absolute angular
velocity of the rigid body in the body-fixed reference frame; Mx,
My, and Mz are body-fixed moments, and Ix, Iy, and Iz are princi-
pal moments of inertia about the x-, y-, and z-axes of the body-
fixed reference frame, respectively. We assume throughout that the
body-fixed moments are constant and the body is spun up �or
down� about the maximum or minimum moment of inertia axis.
�The assumption of constant forces and constant moments is often
reasonable in spacecraft applications because most thrusters oper-
ate in a bang-bang mode in which maximum thrust is achieved in
a few tens of milliseconds and remains constant until shut down
�54�. In order to develop a more sophisticated model, we can
make use of the work of Longuski and Tsiotras �35� and Tsiotras
and Longuski �36�, which employs polynomial functions of time
to represent the thrust.� For axisymmetric, nearly axisymmetric, or
asymmetric rigid bodies where the product �x�y is small enough,
Eqs. �1�–�3� can be simplified as

�̇x�t� =
Mx

Ix
− � Iz − Iy

Ix
��y�z �4�
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�̇y�t� =
My

Iy
− � Ix − Iz

Iy
��z�x �5�

�̇z�t� �
Mz

Iz
�6�

By integrating Eq. �6� and assuming that the axial moment, Mz, is
constant, we obtain

�z�t� � �Mz

Iz
	t + �z0, �z0 � �z�0� �7�

which is, of course, exact for axisymmetric rigid bodies. For the
case of asymmetric bodies, our assumption of ��Iy − Ix� / Iz��x�y
being “small enough” is highly dependent on the application.

3 Kinematic Equations
By using a Type I: 3-1-2 Euler angle sequence �54�, which

relates the orientation of the body-fixed reference frame to the
inertial reference frame, the kinematic equations can be written as
follows:

�̇x = �x cos �y + �z sin �y �8�

�̇y = �y − ��z cos �y − �x sin �y� tan �x �9�

�̇z = ��z cos �y − �x sin �y� sec �x �10�

where �x, �y, and �z are the Eulerian angles. With the assump-
tions that �x and �y are small and that �y�x is small compared to
�z, Eqs. �8�–�10� can be simplified as

�̇x = �x + �z�y �11�

�̇y = �y − �x�z �12�

�̇z = �z �13�

After substituting Eq. �13� into Eq. �6� and integrating, we obtain

�z =
1

2

Mz

Iz
t2 + �z0t + �z0, �z0 � �z�0� �14�

4 Inertial Acceleration Equation
In the presence of constant body-fixed forces fx, fy, and fz, the

rigid body will accelerate with respect to the inertial reference
frame. The following equation relates the acceleration in the
body-reference frame with respect to the inertial reference frame:


v̇X�t�
v̇Y�t�
v̇Z�t�

� = �A�312

fx

m

fy

m

fz

m

� �15�

where �A�312 is the direction cosine matrix

�A�312 = �c�zc�y − s�zs�xs�y − s�zc�x c�zs�y + s�zs�xc�y

s�zc�y + c�zs�xs�y c�zc�x s�zs�y − c�zs�xc�y

− c�xs�y s�x c�xc�y



�16�

When �x and �y are small, the direction cosine matrix can be
simplified as

�A�312 � � c�z − s�z �yc�z + �xs�z

s�z c�z �ys�z − �xc�z

− �y �x 1

 �17�

By introducing the complex functions �1,5,25�

� = �x�t� + i�y�t� �18�

v�t� = vX�t� + ivY�t� �19�

f = fx + ify �20�

and using the first two rows of Eq. �15�, the transverse accelera-
tion can be written in the following compact form:

v̇�t� = ei�z�t�� f

m
−

ifz

m
��t�� �21�

and the last row of Eq. �15� gives

v̇Z�t� =
fz

m
+ � i

2m
	� f̄��t� − f�̄�t�� �22�

Before integrating Eq. �21� and finding the transverse velocity
solution, we need to know the closed-form solutions for �z�t� and
��t�, which are given in Ref. �44�. Because the closed-form solu-
tions for the Euler angles are the basis of the transverse velocity
solution, in Sec. 5 we provide a brief review of those results.

5 Closed-Form Analytical Solution for the Eulerian
Angles

In this solution for the Eulerian angles, the body-fixed mo-
ments, Mx, My, and Mz are assumed constant. By substituting a
new variable �,

��t� � �z = �Mz

Iz
	t + �z0, ��0� � �z0 �23�

into Eq. �13� and integrating with respect to �, �z��� can be ob-
tained as

�z��� =
�

2
��2 − �0

2� + �z0 �24�

where � is defined as

� � Iz

Mz
�25�

It can be shown that Eqs. �1� and �2� can be combined and written
in the following complex form:

����� + i������ = ����� �26�

where the complex function ���� is defined as

���� = �x��� + i�y��� �27�

Equation �26� is a first-order nonhomogeneous differential equa-
tion with a variable coefficient. It can be shown that the solution is
given by Tsiotras and Longuski �33� as

���� = ���0�e−i���2−�0
2�/2 + �e�−i��2/2�I���0,�;�,�� �28�

where

I���0,�;�,�� ��
�0

�

e�i�u2/2���u�du �29�

I���0,�;�,�� = k1I�1��0,�;�,�� + k2I�2��0,�;�,�� �30�

k1 �
��kx� + ��ky�

2k
, k2 �

��kx� − ��ky�
2k

�31�
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kx �
Iz − Iy

Ix
, ky �

Iz − Ix

Iy
�32�

k � �kxky �33�

where k represents the mass properties of the rigid body and I�2
provides the contribution from an asymmetric body

I�1��0,�;�,�� ��
�0

�

e�i�u2/2���u�du �34�

I�2��0,�;�,�� ��
�0

�

e�i�u2/2��̄�u�du �35�

where the bar denotes complex conjugate. We see that the inte-
grals I�1 and I�2 have ��u� in the integrand, which represents the
solution for Euler’s equations of motion

��u� = �x�u� + i�y�u� �36�

�x�u� � �x�u���ky�, �y�u� � �y�u���kx� �37�

I�1��0,�;�,�� = ����0�e�−i��0
2/2� − FĪu0��0;���Īu0��0,�;− ��

+ FJu0��0,�;�,�� �38�

I�2��0,�;�,�� = ��̄��0�e�i��0
2/2� − F̄Iu0��0;���Iu0��0,�;��

+ F̄J̄u0��0,�;− �,�� �39�

� � k�, � � � + � = ��1 + k�, � � � − � = ��1 − k� �40�

Here, we observe that I�1 and I�2 depend ultimately on the
Fresnel integral

Iu0��0,�;�� ��
�0

�

e�i�u2/2�du �41�

F = Fx + iFy �42�

where F represents the constant transverse body-fixed torque

Fx � �Mx

Ix
	� Iz

Mz
	��ky� �43�

Fy � �My

Iy
	� Iz

Mz
	��kx� �44�

and where Ju0 is an integral of the Fresnel integral

Ju0��0,�;�,�� ��
�0

�

e�i�u2/2�Īu0�u;��du �45�

which we analyze later. Now, having found closed-form solutions
for the Eulerian angles, we proceed to find the transverse velocity
solution in Sec. 6.

6 Transverse Velocity Solution
Before integrating Eq. �21�, we will find it useful to replace the

variable t with � by multiplying both sides of Eq. �21� by dt /d� as
follows:

dv
d�

=
�

m
ei�z����f − ifz����� �46�

After integration of both sides, we get

v��� = v��0� +
�f

m
Tv11��0,�;�� −

i�fz

m
Tv12��0,�;�� �47�

where Tv11 and Tv12 are defined as

Tv11��0,�;�� ��
�0

�

ei�z�u�du �48�

Tv12��0,�;�� ��
�0

�

ei�z�u���u�du �49�

On the right-hand side of Eq. �47�, the second and third terms
represent the contribution of transverse and axial body-fixed
forces on transverse velocity. In the case of spinning-up and
spinning-down spacecraft maneuvers, when fx or fy�0 and fz
=0, the transverse velocity solution can be expressed very con-
cisely in terms of Fresnel integrals Refs. �37,55,56�. The analyti-
cal solution for the thrusting spacecraft maneuver when fx= fy
=0 and fz�0 does not appear in the previous literature; we
present the complete transverse velocity solution �for the general
case of nonzero fx, fy, and fz� in this section for the first time. The
analytic solution for transverse velocity is complicated in the case
of fz�0 and fx= fy =0 because fz is the only contributer to the
acceleration, and the axial force must be accurately portrayed in
its projection onto the inertial XY plane. Because of the depen-
dency of the solution on the Eulerian angles and on the angular
velocity solutions, the analytical solution for transverse velocity
breaks down when the solutions for the Eulerian angles and an-
gular velocities break down.

By substituting Eq. �24� into Eq. �48�, Tv11 can be written in the
following form:

Tv11��0,�;�� = ei��z0−��0
2/2�Iu0��0,�;�� �50�

where

Iu0�u;�� =� 	

���
sgn�u�Ẽ�����

	
u	 �51�

Ẽ�����
	

u	 =
E�����
	

u	 when � 
 0

Ē�����
	

u	 when � � 0� �52�

and

E�x� ��
0

x

e�−i	u2/2�du �53�

is the complex Fresnel integral. The sgn�.� symbol in Eq. �51�
represents the signum function, which is sgn�x�=1 for x�0 and
sgn�x�=−1 for x
0.

Substituting Eqs. �24� and �28� into Eq. �49� �after some alge-
bra� provides

Tv12��0,�;�� = ���0�ei�z0�� − �0� + �ei��z0−��0
2/2�Tv21��0,�;�,��

�54�

where

Tv21��0,�;�,�� ��
�0

�

I���0,u;�,��du �55�

Substituting Eq. �30� into Eq. �55�, yields

Tv21��0,�;�,�� = k1Tv31��0,�;�,�� + k2Tv32��0,�;�,�� �56�

where Tv31 and Tv32 are defined as

Tv31��0,�;�,�� ��
�0

�

I�1��0,u;�,��du �57�
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Tv32��0,�;�,�� ��
�0

�

I�2��0,u;�,��du �58�

By integration by parts, we can show that Tv31 and Tv32 can be
determined as

Tv31��0,�;�,�� = �I�1��0,�;�,�� −
F

i�
�ei��2/2Īu0��;��

− ei��0
2/2Īu0��0;��� − �i��−1��0e−i��0

2/2

− FĪu0��0;����ei��2/2 − ei��0
2/2� +

F

i�
Iu0��0,�;��

�59�

Tv32��0,�;�,�� = �I�2��0,�;�,�� −
F̄

i�
�ei��2/2Iu0��;��

− ei��0
2/2Iu0��0;��� − �i��−1��̄0ei��0

2/2 − F̄Iu0��0;���

��ei��2/2 − ei��0
2/2� +

F̄

i�
Iu0��0,�;�� �60�

With Tv31 and Tv32, the analytical closed-form transverse velocity
solution is completed.

7 Transverse Displacement Solution
The displacement solution can be found by integrating the ve-

locity equation, which is

v��� = v��0� +
�f

m
Tv11��0,�;�� −

i�fz

m
Tv12��0,�;�� �61�

with respect to time. After integration, we obtain

d��� = d��0� + �v��0��� − �0� +
�2f

m
Td11��0,�;��

−
i�2fz

m
Td12��0,�;�� �62�

where

Td11��0,�;�,�� ��
�0

�

Tv11��0,u;��du

= ei��z0−��0
2/2��

�0

�

Iu0��0,u;��du �63�

Td12��0,�;�,�� ��
�0

�

Tv12��0,u;��du

= ���0�ei�z0
�� − �0�2

2
+ �ei��z0−��0

2/2�Td22��0,�;�,��

�64�

Td22��0,�;�,�� ��
�0

�

Tv21��0,u;�,��du

= k1Td31��0,�;�,�� + k2Td32��0,�;�,�� �65�

and

Td31��0,�;�,�� ��
�0

�

Tv31��0,u;�,��du �66�

Td32��0,�;�,�� ��
�0

�

Tv32��0,u;�,��du �67�

The contributions of the transverse forces and axial forces on
transverse displacement are represented by the third and fourth
terms on the right-hand side of Eq. �62�, respectively. Like the
velocity solution, both terms in Eq. �62� depend on the Eulerian
angle and the angular velocity solutions so that the displacement
analytical solution is valid when those solutions are valid. Equa-
tion �63� shows that the effect of transverse body-fixed forces on
the transverse displacement can be written in terms of an integral
of a Fresnel integral, resulting in a secular term. We are, of course,
not surprised to see that the transverse displacement grows with
time due to transverse force.

Using integration by parts, we can show that Td31 and Td32 can
be determined as

Td31��0,�;�,�� = ��0e−i��0
2/2 − FĪu0��0;����Td41��0,�;��

−
Iu0��0,�;�� − �� − �0�ei��0

2/2

i�
�

+ FTd42��0,�;�,�� −
F

i�
�Ju0��0,�;�,�� − Īu0��0;��

��� − �0�ei��0
2/2� −

F

i�
�− Td21��0,�;�� + Iu0��0;��

��� − �0�� �68�

and

Td32��0,�;�,�� = ��0
¯ ei��0

2/2 − F̄Iu0��0;����Td43��0,�;��

−
Iu0��0,�;�� − �� − �0�ei��0

2/2

i�
� + F̄Td44��0,�;�,��

−
F̄

i�
�Ju0��0,�;− �,�� − Iu0��0;���� − �0�ei��0

2/2�

−
F̄

i�
�− Td21��0,�;�� + Iu0��0;���� − �0�� �69�

where

Td41��0,�;�� ��
�0

�

uĪu0��0,u;− ��du �70�

Td42��0,�;�,�� ��
�0

�

uJu0��0,u;�,��du �71�

Td43��0,�;�� ��
�0

�

uIu0��0,u;��du �72�

Td44��0,�;�,�� ��
�0

�

uJ̄u0��0,u;− �,��du �73�

After some manipulations, it can be shown that Td41, Td42, Td43,
and Td44 can be written in terms of our “elementary functions,” Iu0
and Ju0, as follows:

Td41��0,�;�� =
�2

2
Iu0��0,�;�� −

�ei��2/2 − �0ei��0
2/2 − Iu0��0,�;��

2�i

�74�
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Td42��0,�;�,�� =
�2

2
Ju0��;�,�� −

�0
2

2
Ju0��0;�,��

+
1

2�i
Ju0��0,�;�,�� −

1

2�i
��ei��2/2Īu0��;��

− �0ei��0
2/2Īu0��0;��� −

1

2��
�ei��2/2 − ei��0

2/2�

−
�2 − �0

2

2
Ju0��0;�,�� �75�

Td43��0,�;�� =
�2

2
Iu0��0,�;�� −

�ei��2/2 − �0ei��0
2/2 − Iu0��0,�;��

2�i

�76�

Td44��0,�;�,�� =
�2

2
J̄u0��;− �,�� −

�0
2

2
J̄u0��0;− �,��

+
1

2�i
J̄u0��0,�;− �,�� −

1

2�i
��ei��2/2Iu0��;��

− �0ei��0
2/2Iu0��0;��� −

1

2��
�ei��2/2 − ei��0

2/2�

−
�2 − �0

2

2
J̄u0��0;− �,�� �77�

With Td41, Td42, Td43, and Td44, the displacement analytical closed-
form solution is completed.

8 Closed-Form Analytical Solution for the Axial Veloc-
ity

In order to find the axial velocity solution, we need to integrate
Eq. �22� with respect to time t. Let us multiply Eq. �22� by dt /d�,
use Eq. �23�, and then integrate it, which yields

vZ��� = vZ��0� +
�fz

m
�� − �0� −

�

m
Im��

�0

�

f̄��u�du� �78�

where Im�.� denotes the imaginary part. If fz�0, the integral
term, last term in Eq. �78�, can be ignored in most applications.
However if fz=0, the last term in Eq. �78� can be determined by
substituting and using Eqs. �28�–�45� in Eq. �78�. Ayoubi �52�
shows that the integral term has a finite limit. The complete
closed-form solution contains about 100 terms; we refer the inter-
ested reader to Ref. �51� for more details.

9 Numerical Results
In this section, we show a few numerical results, concentrating

on the accuracy of the transverse solution; we do not provide
numerical details of the Eulerian angles and angular velocity so-
lutions, which are already discussed extensively in the literature
�32,33�.

We compare our analytical solution to the exact solution. By
“exact solution,” we mean a highly accurate numerical integration
of Eqs. �1�–�3�, �8�–�11�, �15�, and �16�. Because of the approxi-
mation of the Ju0��0 ,� ;� ,�� function via two piecewise continu-
ous functions �given in Appendix A� for small and large argu-
ments, we recall that we have two analytical theories: the “low
spin rate theory” and the “high spin rate theory.” The low spin rate
theory includes spin rates from 0 to 2.36 rpm, and the high spin
rate theory covers spin rates higher than 2.36 rpm. We note that
our approximation solution for Ju0 is very accurate for all spin
rates; it does not break down at intermediate spin rates. We em-
ploye the software package MATHEMATICA® ��57,58�� in this simula-
tion to generate the exact solution. �We use the Bogacki–
Shampine order-five method with local relative and absolute

errors of order 10−14.� The following mass properties and body-
fixed forces and moments �inspired from the case of the Galileo
spacecraft� are used during the simulation with all the initial con-
ditions set to zero:

m = 2000 kg, Ix = 2985, Iy = 2729, Iz = 4183 kg m2

�79�

fx = 7.66, fy = − 6.42, fz = 10.0 N �80�

Mx = − 1.253, My = − 1.494, Mz = 13.5 N m �81�
We will investigate the following case, where

�z�0� = 2.36, �z�tf� = 10 rpm �82�

with the rest of the initial conditions set to zero �i.e., �x�0�
=�y�0�=�x�0�=�y�0�=vX�0�=vY�0�=vZ�0�=0�.

The transverse velocity and displacement for low spin rate in
the inertial frame are shown in Ref. �50�. As we noted in the
development of the analytical solution for the Eulerian angles,
�x�t� and �y�t�, these angles must remain small throughout the
motion for the theory to be valid. Thus, the initial values of �x and
�y must be small and the effect of the transverse torques must be
small as well. One way of insuring that the transverse torque
remains small enough is to require that

�Mx
2 + My

2

Iz�z
2 
 
 �83�

where 
 is a small positive constant�i.e., much less than unity�, as
discussed in the literature �30�. However, Eq. �83� is not necessary
in the initial state of a spin-up maneuver starting from zero spin
rate ��z�0�=0�. We note that in the zero spin rate case, the fol-
lowing inequality must be satisfied:

��Mx/Ix�2 + �My/Iy�2

Mz/Iz

 � �84�

to prevent a large excursion of the spin axis in inertial space,
where � is a small positive constant �much smaller than unity�.
Equations �83� and �84� serve as rules of thumb for when our
analytical solutions are valid. It is clear that the accuracy of the
analytical solution for the transverse velocity and for the trans-
verse displacement are dependent on the accuracy of the anteced-
ent analytical solutions for the angular velocity and for the Eule-
rian angles. Since in our example �shown in Figs. 1–4�, we have
small values for �x and �y throughout the motion, the results of
the analytical solutions for the transverse velocity and the trans-
verse displacement are quite good. In this particular case, �
=0.22.

The associated error between the exact and analytical solution
for the transverse velocity is shown in Fig. 3. We see that the
velocity relative error is 
1% �for most of the duration�. Addi-
tional tests of the analytical solution are given in Ref. �50�.

Of course, it is possible to choose initial and final spin rates,
�z�0� and �z�tf�, such that a combination of the low spin rate and
high spin rate theories is required. We have performed additional
accuracy tests �not shown here� that demonstrate that the simple
concatenation of the two theories provides results consistent with
the accuracies we have seen in the two cases we have presented.
Tests of the analytical solution for the axial velocity confirm that
it is highly accurate for practical cases as shown in Ref. �51�.

10 Conclusion
A complete, closed-form, approximate analytical solution has

been found and outlined for the transverse and axial velocities and
transverse displacement of a spinning-up rigid body subject to
constant forces and torques about all three body axes. Also, we
assume that mass properties are constant and the rigid body spins
around its maximum or minimum principal moment-of-inertia
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axis. We demonstrate that this solution is highly accurate when
compared to the exact solution. Our analysis applies to axisym-
metric, nearly axisymmetric, and �under special conditions� asym-
metric rigid bodies. This behavior of the rigid body is fundamen-
tally based on the Fresnel integral and related integrals. The
numerical simulations are superior to the analytical solutions
when the simulation time is small. However, when the maneuver
duration is long, the analytical solutions provide quick results for
final states, without the need for numerical integration. Applica-
tions of this analytical theory may include spacecraft onboard
computations, probabilistic error modeling for mission-planning,
development of new control concepts for spacecraft maneuvers,
and maneuver analysis. This work complements the contributions
of numerous authors in the literature.

Appendix A: Ju0„�0 ,u ;� ,�… Function
In the definition of Ju0��0 ,u ;� ,��, Eq. �45�, it was shown

�33,44� that Ju0 can be approximated �see Table 1� as

Ju0��0,�;�,��

= � Ju0s��;�,�� , if � � �s = �8/���
Ju0s��s;�,�� + Ju0l��s,�;�,�� , otherwise

�A1�

where, for ���s

Ju0s�u;�,�� �� 	

����n=0

11

�an + ibn�� ���
8
	n+�1/2�

Iu��;�,2n + 1�

�A2�

and for ���s we have

Fig. 1 Exact and analytical solutions for inertial velocity vX at
high spin rate

Fig. 2 Exact and analytical solutions for inertial displace-
ments dX at high spin rate

Fig. 3 Exact minus analytical solution of inertial velocity vX at
high spin rate

Fig. 4 Exact„solid line… and analytical „dashed line… solution of
inertial axial velocity vZ at high spin rate
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Ju0l��s,�;�,�� �� 	

���
�1 − i�

2 �
�s

�

e�i��2/2�d� +� 	

����n=0

11

�cn + idn�

�� 8

���	
�n+�1/2��

Id��s,�;�,2n + 1� �A3�

See Appendixes B and C for more details on the Iu�� ;� ,n� and
Id��s ,� ;� ,n� functions.

Appendix B: Iu„u ;� ,n… Function
In determining Ju0s in Appendix A, we introduced the function

Iu�� ;� ,n�, which is defined as

Iu��0,�;�,n� ��
�0

�

e�i�u2/2�undu �B1�

By using the integration by parts technique, a recursive formula
can be found for Iu�� ;� ,n� as

Iu��;�,n� =
− i�n−1

�
e�i��2/2� +

i�n − 1�
�

Iu��;�,n − 2� �n � 2�

�B2�

Iu��;�,1� =
− i

�
�e�i��2/2� − 1� �B3�

Iu0��;�� =� 	

���
sgn���Ẽ�����

	
�	 �B4�

where

Ẽ�����
	

�	 =
E�����
	

�	 when � 
 0

Ē�����
	

�	 when � � 0� �B5�

and

E�x� ��
0

x

e�−i	u2/2�du �B6�

is the complex Fresnel integral. The sgn�.� symbol in Eq. �B4�
represents the signum function, which is sgn�x�=1 for x�0 and
sgn�x�=−1 for x
0.

Iu��;0,n� =
�n+1

n + 1
�B7�

Iu0��;0� =
�2

2
�B8�

A recursive integral formula can be found as

�
0

�

Iu��;�,n�d� =
− i

�
Iu��;�,n − 1� +

i�n − 1�
�

��
0

�

Iu��;�,n − 2�d� �n � 2� �B9�

�
0

�

Iu0��;��d� =� 	

����
0

�

sgn���Ẽ�����
	

�	d� �B10�

�
0

�

Iu��;�,1�d� =�
0

�
− i

�
�e�i��2/2� − 1�d� =

− i

�
�� − Iu0��;���

�B11�

Appendix C: Id„u ;� ,n… Function
In Eq. �A3�, we introduced a new function Id��s ,� ;� ,n�, which

can be defined as

Id��0,�;�,n� ��
�0

�
e�i�u2/2�

un du �C1�

We can show that

Id��;�,n�

= 
 e�i��2/2�

�n − 1���n−1� +
i�

n − 1
Id��;�,n − 2� , �n � 2;� � 0�

1

�n − 1���n−1� , �n � 2;� = 0�

�C2�

Id0��;�� = �Iu0�� ;�� − Iu0��;�� , �� � 0�
− � , �� = 0�

�C3�

Id��;�,1� =
1

2
Ei� ����2

2
	 �C4�

where Ei��� is the exponential integral function and is defined as

Ei��� ��
�

�
ei�

�
d� �C5�

A recursive integral formula is given by

�
�s

�

Id��;�,n�d� =
1

n − 1
�Id��s,�;�,n − 1�

+ i��
�s

�

Id��;�,n − 2�d�� �n � 2� �C6�

and

�
�s

�

Id0��;��d� = Iu0�� ;���� − �s� −� 	

����
�0

�

sgn���Ẽ�����/	��d�

�C7�

�
�s

�

Id��;�,1�d� = �Id��;�,1� − �sId��s;�,1� + Iu0��s,�;��

�C8�

Table 1 Boersma’s numerical values of coefficients for the
Juo„� ;� ,�… approximation †55‡

i ai bi ci di

0 1.595769140 −0.000000033 0.000000000 0.199471140
1 −0.000001702 4.255387524 −0.024933975 0.000000023
2 −6.808568854 −0.000092810 0.000003936 −0.009351341
3 −0.000576361 −7.780020400 0.005770956 0.000023006
4 6.920691902 −0.009520895 0.000689892 0.004851466
5 −0.016898657 5.075161298 −0.009497136 0.001903218
6 −3.050485660 −0.138341947 0.011948809 −0.017122914
7 −0.075752419 −1.363729124 −0.006748873 0.029064067
8 0.850663781 −0.403349276 0.000246420 −0.027928955
9 −0.025639041 0.702222016 0.002102967 0.016497308
10 −0.150230960 −0.216195929 −0.001217930 −0.005598515
11 0.034404779 0.019547031 0.000233939 0.000838386
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Extended Fatigue Life by Shot
Peening Process via Shakedown
Analysis
The goal of this work was to quantify the improvement in the fatigue limit of solid
structures which have undergone shot peening (SP) by small rigid particles. The work
was based on Melan’s shakedown theorem for estimating the allowable safe stress am-
plitude (in a lower bound sense) of structures that otherwise might fail during fatigue
loading by plastic strain accumulation (ratcheting). Aided by geometrical simplification
(mainly by assuming that the residual craters of the peened surfaces are shallow and
flat), the benefit of SP to increase fatigue limits of structures subjected to fluctuating loads
was quantified and compared to experiments. As a by-product, the long-time accepted
empirical formulas for decreasing fatigue limits due to an increase of the loading mean
tensile stress (Gerber, 1874, Z Bayer Arch Ingenieur-Vereins, 6, pp. 101–110; Goodman,
1899, Mechanics Applied to Engineering, Longmans, Green, London) have received a
theoretical justification from shakedown analysis. The suggested empiricism-free solution
traces well Gerber and Goodman’s empirical formulas in the positive mean stress regime
of the applied load. It has a notable advantage that it also smoothly extends to the
negative mean-stress regime (akin to the superimposed residual compressive stresses in a
thin layer generated by the SP process) not covered hitherto by formulas. This shakedown
analysis manifests the merit of shot peening processes by showing specifically the exis-
tence of larger range of fatigue-safe stress amplitudes (or equivalently, exhibiting a
prolonged fatigue life) before disruption by ratcheting. Various fatigue experiments which
were found in the open literature, are in a satisfactory agreement with the theoretical
analysis. �DOI: 10.1115/1.2745357�

Keywords: shakedown condition, fatigue life-time, fatigue limit, shot peening, ball
indentation, crater, inclusion model, lower bound, mean stress, residual stress, stress
threshold, yielding

1 Introduction
The notion that the compressive component of residual stress

can, under certain circumstances, defer premature mechanical fail-
ure, has been empirically recognized for more than a century.
However, when fatigue loading was superimposed on the residual
stresses, the time to failure, while empirically measurable, has not
been theoretically predicted. For instance, the sleeved autofrettage
procedure in barrel cannons �1�, the overload stress cycle of
cracked solid for delaying crack propagation �2�, shot peening
�SP� in surface treatments of machine parts for longer fatigue life
�already encoded in military specifications �3��, are just a few of
the applications benefited from imposed residual stresses. Due to
cost considerations, SP is applied customarily only to critical me-
chanical parts �such as leaf springs, gears, connecting rods, etc.�,
largely in car and aircraft industries, where long fatigue lives are
required.

It was the goal of this study to examine the capability of SP to
increase fatigue limits �or alternatively, to prolong fatigue life� in
a quantitative way. This is done by implementing the lower bound
of the shakedown theorem �denote shortly as “shakedown analy-
sis”� originated by Melan in 1936 �4�. In recent years, assisted by
this theory, researchers have been able to expand their understand-
ing of several mechanical phenomena �e.g., Dvorak and Tarn �5�,
Ponter and co-workers �6,7�, Kapoor and Johnson �8�, Tirosh �9�,

and others, along with a refreshed theoretical guidelines by Poliz-
zotto �10,11��.

The effect of SP is viewed here from a crack-free approach,
which assumes that the structure has no initial cracks �besides the
microstructural defects, which presumably do not grow by fa-
tigue�. This approach, originated historically by Gerber in 1874
�12� and followed by Goodman in 1899 �13�, was widely prac-
ticed since that time and is still widely used in assessing decreases
in fatigue limits as a result of an increase in the tensile mean
stress. These well used empirical formulas have never been sub-
stantiated by theory. The present study is intended to provide a
theoretical foundation to account for the effect of mean stress
�both positive and negative� on fatigue limits affected by SP pro-
cesses. Experimental background for the SP analysis presented
here was provided by Al-Obaid �14� and by Hammond and
Meguid �15�. Their empirical results are compared to validate the
analysis, done in the analysis of �16�.

The paper begins by outlining the basic assumptions and the
material characterization. Next, the residual stress distribution
near an impinged SP ball is solved. Assisted by the predefined
“inclusion model,” the magnitude of the residual stress is ob-
tained. Further on, a fluctuating load between prescribed limits is
superimposed on the residual stress and the associated expression
for the shakedown condition is formulated. Finally, the pros and
cons of the SP processes are viewed via comparison to several
available experimental data.

2 Basic Assumptions and Definitions
Consider an elasto-plastic solid whose free surface undergoes

shot peening by hard small particles �usually ceramics balls with
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diameter of about 2R0�1 �mm�� as shown in Fig. 1. The solid is
affected by being plastically deformed in a relatively thin layer
adjacent to the free surface. Each ball, after impacting and bounc-
ing off the surface �assuming, for simplicity, in the normal direc-
tion�, leaves on the surface a circular shallow “crater.” The plas-
tically affected zone beneath the crater, created by the indented
ball, is customarily assessed numerically �17� and/or via the
amount of the kinetic energy imparted to the solid by individual
balls �18�.

The basic assumptions in the development of the model are:

�i� The depth of the craters are small compared to the ball
radius and are therefore considered flat.

�ii� The residual plastic strain beneath craters is elastically
confined, being on the order of the elastic yield strain.

�iii� The residual plastic zone is hypothesized to have a penny-
shaped configuration �of radius a and height h�.

�iv� The effects of the impinging balls are considered as non-
interactive.

�v� Multiple impacts of the balls and the changes of the ma-
terial properties are excluded.

These assumptions define the so-called inclusion model of shot
peening �Fig. 2� with which the model is derived.

3 Mechanical Behavior
The elasto-plastic engineering materials under consideration be-

have in a linear elastic manner up to yielding. That is,

�

�0
=

�

�0
for � � �0

�1�
� → �p for � = �0

where �0 is the yield stress in unidirectional tension, � and �p are
the effective strains defined in term of the second strain invariant
as

� =
2
�3
�1

2
�ij�ij �2�

and � is the effective �von Mises� stress, related to � �or �p� by the
work equivalence, namely, ��=�ij�ij.

The true strain across the plastically deformed skin �h� is gen-
erated by the incremental indentation depth �z of the ball �the
decrement of �z is considered positive�. The in-plane plastic de-
formation is confined by the surrounding elastic matrix, so that the
plastic strains are moderately small �of the order of the elastic
strains�. It is given by

�z =�
h

h−�z
dz

z
= ln�h − �z

h
	



�z

h
+

1

2
��z

h
	2

− ¯ �for ��z

h
� � 1	 �3�

Similarly, the other two plastic strain components, using �r ,� ,z�
coordinate system, are

�r = �� =�
a

a+�a
dr

r
= ln�1 +

�a

a
	 �

�a

a
�4�

where a is the projected radius of the indent.
From the incompressibility condition of the plastically de-

formed volume beneath the crater, Eqs. �3� and �4� lead to the
radial expansion of

�a

a
=

1

2

�z

h
�5a�

From Eqs. �4� and �5a�, it is readily seen that the effective plastic
strain �p �defined in �2�� is reduced to

�p = ��z� =
��z�

h
= 2

�a

a
�5b�

A criterion of whether an indentation of depth �z with imprint
radius a will cause a fully plastic flow under the impinging balls
was observed and formulated, for example, by Johnson �18� and
Bower et al. �17�. It was shown that in order to generate a fully
developed plastic flow under a semi-sphere indenter, a dimension-
less parameter, say, A should exceed a certain value. It reads

A =
�z

a

E

�0
� 30 �6�

where E denotes the elastic modulus of the indented material.

Fig. 1 Schematic view of shot-peening process and a single
residual crater

Fig. 2 The inclusion model used to simplify the theoretical
shakedown analysis. The plastically deformed zone „incom-
pressible inclusion… has a penny-shaped configuration, com-
pressed by the elastic surrounding with a lateral pressure p.
The residual stress distribution is shown beneath.
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As a practical example, assume an indentation by a ball of
radius R0=1 mm into a material with relative strength of �0 /E
�10−3. If the included contact angle of the material/ball �2�� is
about 10 deg, then the residual imprint radius is about a�R0�
�=0.1 mm�. Therefore, the minimal indentation depth needed to
satisfy Eq. �6� is of the order of few tenths of micrometers �some-
what larger than a typical grain sizes of common engineering
materials�. Such an amount of surface indentation, as measured,
for example, by Hammond and Meguid �15�, produces a signifi-
cant in-plane compressive residual stress, the magnitude of which
is addressed as follows.

4 Residual Stresses

4.1 The Source. Consider a single ball that impacts the top
surface of a solid at a certain velocity and bounces back at a
different velocity. The difference in the kinetic energy of the ball
before and after impact is assumed to be the energy required to
plastically deform a disklike volume of material under the
traction-free trace of the ball. The elastic surrounding material
which has been displaced by the impinging ball “attempts” to
restore its initial position, whereas the plastically deformed disk
�incompressible “inclusion”� sustains a residual strain as ex-
pressed by Eq. �4�. This physical situation causes an in-plane elas-
tic residual compressive stress in the plastically deformed zone,
the distribution of which is solved in the following development.

4.2 The Residual Stress Solution. The governing equations
which express this physical situation �static self-equilibrium and
compatibility� can classically be derived via an Airy stress func-
tion 	�r ,�� to a single bi-harmonic function, namely,

�4	 = 0 �with the pertinent boundary conditions� �7a�

where the stress components are defined in the �r ,�� plane as

�rr �
�	

r � r
+

�2	

r2 � �2 ; ��� �
�2	

�r2 ; ��r � −
�

�r
�1

r

�	

��
	

�7b�
Due to the circular symmetry with respect to the angular direction
��� of the SP affected zone, the general solution of Eq. �7a� has
only one variable �r�, which renders

	 = A ln�r� + Br2 + Cr2 ln�r� + D �8�
The boundary conditions are �see Fig. 2�:

�i� at r=0 the stresses are finite;
�ii� at r=a the radial stress, �rr

�res��a�, is the in-plane confining
residual stress of magnitude p �pressurelike� imposed by
the elastic surrounding;

�iii� at a remote distance from the crater �where r
a� the
boundary of the plate is stress free, so that the radial stress
is zero;

�iv� the value of the free constant �that is, D in Eq. �8��, is
immaterial, since in the above potential function 	�r�, the
“zero level” is arbitrary.

Based on these four boundary conditions, the solution of Eq. �8�
via the definitions of Eq. �7b� is reduced to the following residual
stresses:

�rr
�res� = ���

�res� = 2B, B =
p

2
along 0 � r � a �9a�

�rr
�res� = p/�2, ���

�res� = − p/�2

where � � r/a along a � r � 
 �9b�
It is seen in �9a� that the residual compressive stress in the plas-
tically deformed zone is under a uniform hydrostatic state of p /2.
The magnitude p �as will be seen later� depends on the elastic

modulus and the yield strength of the indented material.
Beyond the plastically deformed zone the radial stress �rr

�res�

continues to sustain compression with a rapid decay to zero at far
distance as shown in Eq. �9b�. The circumferential stress ���

�res�

undergoes a �permissible� jump of 2p along the elastic-plastic
interface as shown in Fig. 2. Outside the interface it becomes
abruptly tensile stress.

The outcome is that after the shot-peening process the mean
residual stress inside the plastically deformed zone is uniformly
compressive. The expressions for plane stress and plane strain
�respectively� are:

�m
�0� =

1

3
��rr

�res� + ���
�res� + ��0�� = −

2

3
p

�m
�0� = − p

�0 � r � a� �10�

From global equilibrium considerations it is clear that the radial
stress component along the depth direction �z� should somewhere
be changed to tension, as the line integral of the stress distribution
�forces� and the first moment along any cross-sectional line be-
tween 0�z�
 in traction-free structure should sum to zero �see
Fig. 6�. Such results were practically tested �for example, by Al-
Obaid �14��, showing that further down the structure, beyond a
thin layer �0�z�h, for h�a� the compression turns sharply to
tension, pending �slightly� on the impacting velocity of the rigid
particles.

5 The Inclusion Model

5.1 The Plastic Thin Layer. To evaluate the magnitude p of
the residual stress in Eq. �10�, one can make use of the suggested
penny-shaped inclusion model illustrated in Fig. 2. The top side of
the inclusion is always traction free. Since the crater is considered
shallow and flat, one may assume that the plastic layer underneath
it is considerably thin with respect to the characteristic size of the
crater �say, of the order of h=101 �m�. This assumption leads to
relatively light normal and shear stresses at the crater’s bottom
face. That is to say, the stress state of the inclusion model is close
to plane stress condition although the overall structure is presum-
ably under plane strain state. The following analysis considers
both cases whenever this distinction is meaningful.

5.2 The In-Plane Pressure p Acting on the Inclusion. We
consider a stress-free elastic structure with shear modulus � em-
bedded by a thin, incompressible, elastic deformable inclusion,
with shear modulus �0. From here on, the properties with sub-
script “o” refer to the inclusion, such as the shear modulus �0 and
the Poisson ratio �0. Otherwise the properties refer to the bulk
solid. In the present situation the shear moduli are the same, �
=�0 but the Poisson ratios are different, i.e., ��1 /3 and �0
=1 /2, respectively �to reflect incompressibility of the material
presented by the inclusion�.

The inclusion of radius a can be envisioned as if forced into
penny-shaped cavity in the surface layer of the structure having a
smaller space, say of a radius of a−�a. This apparent geometrical
“mismatch” of �a is ultimately removed by the elastic adjustment
of the expansion/contraction of the surrounding elastic solid in
such a way that displacement continuity along their common bor-
der prevails all around. The remaining question is: What is the
magnitude p of the interfacial radial pressure �rr�a� needed to
preserve this geometrical compatibility in terms of the initial mis-
match �a.

A general plane solution to this kind of problem is given by
Muskhelishvili ��18��. With some algebra, it is shown that

p =
4�0��

2�0a + ���0 − 1��a − ��
, � � �a

�11�
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�0 = 3 − 4�0 or �0 =
3 − �0

1 + �0

for plane strain or plane stress, respectively.
If the actual indentation of a ball into the solid during SP is

shallow with regard to the ball dimension, the geometrical mis-
match is consequently small, say, �a /a�1. From elasticity rela-
tionships with Poisson ratio of �=1 /3 and Young’s modulus of
E�8 /3�, Equation �11� gives the magnitude of the residual stress
as

p

�0
= −

3

8

E

�0
�p for plane strain �12a�

and

p

�0
= −

9

32

E

�0
�p for plane stress �12b�

Since the disklike inclusion is confined to its plane by the elastic
surrounding, the plastic strain is necessarily close to the limit
elastic strain; namely, 1 /�p�1 /�y �E /�0. As a result of �12a�
and �12b�, the residual stress in r�a is in the range

9

32
� � p

�0
� �

3

8
�13a�

If there is no interaction between the bombarding balls that im-
pinge the whole surface, one can conclude from Eq. �13a� that
after SP operation the solid is subjected to residual pressure of
about

p � −
1

3
�0. �13b�

This theoretical estimation of residual stress is on the lower end of
experimentally measured values from post-SP solids �14,20�,
where the ratio p /�0 of about −1 /2 is quoted rather than −1 /3.
However, one can see that the comparison becomes much closer
when replacing the ideal rigid-plastic yield stress �0 by the ulti-
mate tensile stress �uts���0� in Eq. �13a�. For example, with steel
alloy �S48C� �where �uts=630 MPa� the measured residual com-
pressive stresses, using X-ray diffraction techniques, vary near to
�rr

�res�����
�res��−200 MPa �i.e., p /�0�−0.32�. Tests with alumi-

num 7075 �where �uts=526 MPa� the experimental residual stress
were also �rr

�res�����
�res��−200 MPa �i.e., p /�0�−0.38�. Hence,

the agreements with the prediction of Eq. �13b� are satisfactory.
On the other hand, in regard to steel alloy 080M40, with experi-
mental values of ��uts=550 MPa and �rr

�res�����
�res��−440 MPa�,

the ratio appears to be p /�0�−0.8, which is considerably greater
than anticipated.

6 In-Plane Fatigue Loading
During working conditions, the structure is assumed to undergo

fatigue loading of all kinds, but primarily at relatively low stress
levels �such as vibrations that result from rotating engines, con-
sidered as “high cycle fatigue”�. If the shot-peened structure is
subjected to “low cycle fatigue,” the residual stress is presumably
less important in light of the accompanying large scale plasticity.
The following analysis stays general by including the whole spec-
trum of possible loadings. How is the SP effect quantified or
�more precisely� what is the demarcation between the safe fluctu-
ating stress amplitude for “infinite” lifetime and the unsafe stress
amplitude at which the structure may eventually fail by ratchet-
ing? The shakedown theorem is structured to give lower bound
estimation to this question.

Elastic Solutions. Solutions for the elastic stress distribution
caused by the �in-plane� remote fluctuating stress, �
�t� inside the

inclusion �with superscript “0”� and outside it �with superscript
“e”� are solved rigorously by Muskhelishvili �19�. They are, re-
spectively,

�rr
�0��t� =

�
�t�
2

��0 − �0 cos�2���

���
�0��t� =

�
�t�
2

��0 − �6�0�2 − �0�cos�2��� � 
 �r/a� � 1 �14�

�r�
�0��t� =

�
�t�
2

�3�0�2 − �0�sin�2��

and

�rr
�e��t� =

�
�t�
2

�1 − ��−2 − �1 − 2��−2 − 3��−4�cos�2���

���
�e��t� =

�
�t�
2

�1 + ��−2 + �1 − 3��−4�cos�2��� � 
 �r/a� � 1

�15�

�r�
�e��t� =

�
�t�
2

�1 + ��−2 + 3��−4�sin�2��

The parameters �o ,�o ,�o in �14� and � ,� ,� in �15� depend on the
four elastic constants of the two constituent materials
�� ,�0 ,� ,�0� as if they are virtually two different materials, ac-
cording to

�0 = 0
�16�

�0 =
�0�� + 1�

2�0 + ���0 − 1�
, �0 =

�0�� + 1�
� + �0�

and

� =
���0 − 1� − �0�� − 1�

2�0 + ���0 − 1�
�17�

� = −
2��0 − ��
� + �0�

, � =
�0 − �

� + �0�

where

� = 3 − 4� �0 = 3 − 4�0 for plane strain
�18�

� =
3 − �

1 + �
�0 =

3 − �0

1 + �0
for plane stress

The average fluctuating stress inside the inclusion is then

�m
�0��t� =

1

3
�ii

�0��t� =
1

3
��rr

�0��t� + ���
�0��t� + 0� �19�

In view of �14� and �16�, �19� is reduced to

�m
�0��t� =

�0

3
�
�t� �20�

By substitution of the Poisson ratios �=1 /3 and �0=1 /2 in �0,
the outcome is �0=9 /8.

A remarkable result that emerges from Eq. �20� is that the fluc-
tuating average mean stress inside the inclusion is independent of
the positional coordinates �r�a�. This result is in agreement with
Eshelby’s well known “inclusion paradox” �21� stating that a re-
mote load acting on an elastic solid �even in a 3D case� will
always render a uniform stress inside an imbedded foreign inclu-
sion.
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7 Lower Bound by Shakedown Analysis
Melan’s theorem �4� states that an elastic-plastic material sub-

jected to a fluctuating load will respond to the load in an elastic
way if the fluctuating unbounded elastic stress �not the actual
elastic-plastic stress under the same boundary conditions� super-
imposed on a time-independent admissible residual stress field
possessed by the structure, does not exceed the yield strength of
the material.

In other words, the structure subjected to cyclic loading be-
tween prescribed limits will shakedown �i.e., will respond elasti-
cally without accumulation of strain� if the sum of the two stress
distributions �the residual stress and the applied stress�, �ij

�res�

+�ij
�e��t�, will not exceed yielding anywhere at all times. This

means

F��ij
�res� + �ij

�e��t�� � �0 in V, for any time t �21�

where F�¯� is any applicable yield function in the volume V of
the considered material. The equality sign in Eq. �21� produces the
shakedown condition.

The shakedown condition is the locus of the lower bound solu-
tion for the greatest allowable fatigue-safe stress amplitudes for
“infinite” life �called “fatigue limit,” “endurance limit” or “fatigue
threshold” �th� at all possible magnitudes of the elastic residual
stresses existing in the solid.

Let us assign, for convenience, the instantaneous sum of the
elastic stress and the residual stress as

�ij
�sum��t� 
 �ij

�e��t� + �ij
�res� �22�

By specifying a certain yield function F�¯� to Eq. �21�, the
shakedown analysis is constructed via, say, von Mises yield crite-
rion, by the following steps:

�i� Use the yield condition F�¯�, which is

F =
1

2
���rr

�sum� − ���
�sum��2 + ����

�sum� − �zz
�sum��2

+ ��zz
�sum� − �rr

�sum��2� + 3�r�
�sum�2 = �0

2 �23�
�ii� Use the elastic stress components, �ij

�e��t� from Eq. �15�
and the residual stress components �ij

�res� from Eq. �14� to
specify the expression �22�.

�iii� Substitute Eq. �22� into Eq. �23� to render a closed form
expression �though lengthy� for the shakedown condition,
written shortly in terms of its independent variables as

F��

2 ,p2,�,�� = �0

2 �24�

In order to satisfy Eq. �24�, one has to search through the loaded
structure for the first yielding point.

Due to linearity of the elastic stress fields �up to yielding� the
location of this point does not vary at various stress amplitudes. It
was found to be positioned always on the inclusion/matrix inter-
face �at �=1, and �=45 deg�. As a result, Eq. �24� is reduced to
the following ellipselike expression in the stress space using the
normalized stress amplitude ��
�t� /�0� and the normalized re-
sidual stress �p /�0� as coordinates. It yields

K11��
�t�
�0

	2

+ K12��
�t�
�0

	� p

�0
	 + K22� p

�0
	2

= 1 �25�

The coefficients of the ellipse given in Eq. �25� are evaluated in
plane strain case to be: K11=1, K12=1, K22=1. In plane stress case
they are K11=273 /256, K12=9 /8, K22=1. These two ellipses are
drawn for the whole range of elastic residual stresses in Fig. 3,
using zero-tension and zero-compression loading histories. In the
considered problem, the difference between plane strain and plane
stress solutions is practically indistinguishable. The meaning of
the shakedown condition of Eq. �25� is that the applied stress
�
�t� is fatigue safe when it falls inside �or on� the ellipses of Fig.

3. Stress amplitudes that are outside the ellipses are prone to fa-
tigue failure by ratcheting.

In classical fatigue experiments �i.e., laboratory fatigue tests�
the fluctuating loads are prescribed between extreme amplitudes
of �
max and �
min during harmonic time periods. It is customary
to define a time-independent average mean stress to which the
structure is continuously subjected as

�m =
��
max + �
min�

2
�26�

For fully reversed fatigue loading �namely, R=−1, where R

�
min /�
max� the mean stress in the bulk structure is zero. How-
ever, if the structure has undergone SP beforehand, the hydrostatic
residual pressure at the affected surface layer shifts the “zero-
ground mean stress” to a negative value with a clear fatigue-limit
advantage.

It is suggested herewith to consider the loading mean stress of
Eq. �26� as an enlarged definition of time-independent residual
stress acting throughout the bulk structure. Thus, �after replacing
p by �m and naming the fluctuated stress amplitude �
�t� by �a in
Eq. �25��, the shakedown condition provides admissible generality
for fatigue analysis. The final expression �plotted in Fig. 4�a�� is
hence given by

K11��a

�0
	2

+ K12��a

�0
	��m

�0
	 + K22��m

�0
	2

= 1 �25��

The experimental fatigue data added to Fig. 4�a� were collected
from Dowling �22�.

A good agreement is seen for positive mean stress with regard
to the empirical formulas of Gerber �12� and Goodman �13� and
the suggested shakedown curve. In the negative mean stress re-
gime both empirical lines are clearly inappropriate, while the sug-
gested theoretical curve appears in agreement with experiments.
Presently, no other theoretical expression has yet been offered to
describe how negative mean stress �in particular� affects the fa-
tigue limit of structures.

8 Quantification of SP Merits
The stress amplitude of the fatigue limit is defined for practical

purposes as the threshold stress amplitude �th at which the struc-

Fig. 3 The shakedown condition „solid curves… for zero-
tension and zero-compression loading as a function of the
magnitude of the residual stresses for plane stress and plane
strain cases „akin to a thin surface layer of the structure and its
bulk respectively…. The difference in the present fatigue prob-
lem is considered negligible. The stress values inside the
closed ellipses indicate fatigue-safe loading amplitudes. The
stress values outside the ellipse indicate unsafe fatigue load-
ing in the sense of being exposed to accumulation of plastic
strains „ratcheting…. The solid lines are the demarcation be-
tween safe and unsafe fatigue loading „shakedown conditions….
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ture can survive at least Nf �107 cycles under a fully reversed
cycles �that is at �m=0�. Therefore, in order to quantify the ad-
vantage of SP in increasing the fatigue limit, it is convenient to
normalize the stress amplitude in Eq. �25�� with respect to the
fatigue limit at fully reversed cycles; namely, by replacing �0 by
�th without any change otherwise, as shown in Fig. 4�b�.

The plot indicates a sharp deterioration in the allowable stress
amplitude �or alternatively diminishing fatigue life� when the
mean tensile stress in the structure is increased. Inversely, a sig-
nificant improvement in fatigue limits is manifested when decreas-
ing the loading mean stress; i.e., by adding compressive hydro-

static residual stress. This primary merit of the SP process is
examined as follows.

Consider structures undergoing fluctuating load with fully re-
versed cycles, �
max=−�
min. After applying the SP process,
which causes residual compressive layer of p�−�0 /3 �from
�13b��, the mean stress in this layer is changed by

��m
�0� � − 2p/3 � − 0.22�0 �27a�

The associated improvement in the fatigue limit is readily under-
stood from Fig. 4�b�. It shows that the stress amplitude of the
fatigue limit is favorably increased by 10%, namely,

��

�0� = 0.10�th �27b�

On the other extreme, consider loading amplitude near �m
�0�=�0.

In this case the structure will not shakedown, which means that it
will fail �by ratcheting� for any added positive residual stress
and/or for slightly higher stress amplitudes. However, when ap-
plying the SP process, the mean stress is reduced by

��m
�0� � �0 − 2p/3 �27c�

and no fatigue failure is expected.
In such a situation, as exhibited in Fig. 4�b�, the allowable

stress amplitudes is consequently raised by 32%, since

��

�0� = 0.32�th �when �m = �0� �27d�

and thus enables the prolonging of fatigue life.
The experimental S-N curve �stress versus number of cycles� of

Hammond and Meguid �14� can now be replotted by superimpos-
ing on their pre-SP measurements the predicted fatigue-limit im-
provements. The results are compared to their actual post-SP mea-
surements in Figs. 5�a� and 5�b� for two different materials.

9 Discussion
The pronounced benefit of SP process is to reduce �at the

treated surface layer� the hazardous mean stress level of the fa-
tigue loading. This reduction is a result of a favorable residual
stress induced by the SP process. The associated improvement in
the allowable fatigue limit amplitude with respect to non-shot-
peened structures is at least 10% �when the loading mean stress is
zero, i.e., �m=0� and up to 32% �when the loading mean stress is
close to the yield stress, i.e., �m=�0�, as seen in Fig. 4�b�. The
theoretical anticipation agrees relatively well with experimental
data �see Figs. 5�a� and 5�b��.

The above benefit of SP processes is not complete without con-
sidering its down side. As mentioned, the core of the solid beneath
the SP layer has inevitably �from static equilibrium consideration�
a tensile in-plane residual stress as well. This tensile stress has an
adverse effect on fatigue lifetime, the magnitude of which needs
to be explored in each case. Since the layer that contains the
compressive residual stress of SP processes was shown to be thin,
the remaining cross-sectional area of the solid should be much
thicker in order to “disperse” along a longer distance �and thus to
lower� the detrimental effect of the residual tensile stress �see Fig.
6�. Such a conclusion was evidenced in �14� and �20�. It becomes
clear now that there is no beneficial reason, for instance, to shot
peen thin sheets of metals.

Finally, another quantitative advantage of SP is worth mention-
ing. The fact that the compressive residual stress is concentrated
along a thin layer adds a meaningful advantage regarding the
damage tolerant approach. It is known that micro-cracks tend to
propagate from the free surfaces, because �by fracture mechanics
arguments� they have higher stress intensity factors �by about
12%� compared to micro-cracks of the same length inside the
volume subjected to the same loads. The presence of the residual
compressive stress at the surface layer is superimposed on the
tensile fatigue stress and hence diminishes its harmful effect on
driving cracks propagation. Therefore, SP processes enhance
longer fatigue life also by delaying �or even arresting� elongation
of cracks from free surfaces.

Fig. 4 „a… The anticipated deterioration/enhancement of the fa-
tigue limit „in fully reversed fatigue cycles… by an increase/
decrease of the mean stress „the SP affected layer is always
under residual hydrostatic pressure and thus always reduce
the mean stress in the layer…. The comparison to “historic” ex-
perimental functions „Gerber’s parabola, 1874, Goodman’s line,
1899…, is satisfactory merely along the positive side of the
mean stress. The shakedown analysis solution seems to com-
ply with experiments also in the negative side. The fatigue data
were performed on 7075-T6 aluminum by Dowling †22‡ for infi-
nite life „where the number of cycles are Nf�107

…. „b… Sche-
matic demonstration of the anticipated improvement in fatigue-
limit achievable by SP operation, shown, as an example, at two
extreme structural mean stress: �m=0 and �m=�0. The associ-
ated improvements in the fatigue limit are calculated to be in-
creased by 10% and 32%, respectively.
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10 Conclusions

�a� The theoretical shakedown analysis is shown to capture
relatively well the influence of the mean loading stress on
fatigue limits on both positive and negative sides of the
diagram.

�b� The overall attribute of SP is to enhance the fatigue limit
by adding negative residual mean stress into the surface
layer of the structure.

�c� This favorable effect is lightly non-linear �as opposed to
Goodman’s line�. The quantified improvement varies
from 10% to 32% in the stress amplitude of the fatigue
limit.

�d� The potential propagation of micro-cracks in the SP af-
fected surface layer is delayed �or entirely arrested� by
the residual compressive stress layer.

�e� The bulk core of the structure is unavoidably affected by
self-equilibrated residual tensile stresses whose magni-
tude depends on the structure thickness. From this regard,
the expected SP improvement of fatigue life is slightly
worsened. Statistically, this overall view may be reflected
by relatively large scatter of experimental fatigue data �as
seen, for example, in Figs. 5�a� and 5�b��. Such consid-
erations seemingly have passed unnoticed in the
literature.
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Fig. 6 A schematic view on the in-plane residual stress distri-
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from a shot-peening process. It is seen that the thicker the
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compressive stress generated in the SP layer…. The sign “−”
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will also be less pronounced in thicker plates.
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Parametric Instability of a Moving
Particle on a Periodically
Supported Infinitely Long String
A new method is proposed of theoretical analysis of the dynamic instability of a moving
object on a periodically supported, infinitely long elastic structure. To demonstrate this
method, a simple example is considered of a moving particle on an elastically supported
string. The equations are obtained that govern the system parameters that correspond to
the boundaries separating stability and instability in the parameter space. These equa-
tions are in the form of the determinant of an infinite matrix and are analogous to Hill’s
infinite determinant. A parametric analysis of the instability zones is carried out in the
plane of the normalized particle mass and particle velocity. The focus is placed on the
effect of elasticity and viscosity of the supports. An analytical validation is presented of
the numerically obtained instability zones. This is done using a simplified model of the
string on the corresponding continuous foundation. �DOI: 10.1115/1.2745368�

1 Introduction
As an integral part of the development of high-speed railway

lines, the moving load problem has been the subject of many
research efforts �1�. Vibrations of the rails caused by train wheels
as well as vibrations of the overhead power lines induced by cur-
rent collectors were in the focus of these efforts. The vast majority
of the studies assumed that if the elastic system �a rail or a contact
wire� is sufficiently long and the load speed is constant the steady-
state regime will be reached by the system after a sufficiently long
time. This implies that the dynamic interaction between the mov-
ing load and elastic system was assumed to be dynamically stable.

The dynamic stability of a moving load is not guaranteed pro-
vided that the degrees of freedom of the load are accounted for,
for example, if the load is modeled as a mass-spring system in the
gravity field. The possibility of the dynamic instability of a load
on an infinitely long homogeneous elastic system was first dem-
onstrated in �2� and �3�. The underlying physics of this phenom-
enon was explored in �4�. The engineering relevance of this type
of instability for railways on soft soil was addressed in �5�.

The instability of a moving load on a periodically inhomoge-
neous elastic system was first shown in �6�. This type of instability
is closely related to parametric resonance in dynamic systems, the
parameters of which vary periodically in time. Indeed, the param-
eters of a periodically inhomogeneous elastic system at the con-
tact point with a moving load vary periodically in time provided
that the load velocity is constant. The period of this variation
equals d /V, where d is the spatial period of inhomogeneity and V
is the load velocity. Obviously, one can expect parametric reso-
nance if one of the natural frequencies of the load on the elastic
system equals nd /2V.

Because of the relative difficulty of mathematical analysis that
is needed to find the instability zones for a moving load on a
periodically inhomogeneous system, only a few particular models
have been analyzed in the past. In the pioneering paper �6�, an
oscillator was considered on a series of simply supported beams.
Using the known mode shapes of this series of beams, the prob-
lem was reduced to an infinite set of ordinary differential equa-
tions with periodic in time coefficients. This system was subse-
quently analyzed using Hill’s method of infinite determinants

�7,8�. In �9� and �10�, a perturbation method was applied assuming
that the inhomogeneity of the elastic system is small. In �11�, the
reaction of a periodically inhomogeneous overhead wire system to
a moving pantograph was replaced by a spring, the stiffness of
which varies in time periodically. To describe this stiffness, both
the static and dynamic stiffness of the wire were used.

The methods of the stability analysis presented in �6–11� are
not general. The method introduced in �6� requires the mode
shapes of the elastic system be known in advance, which is nor-
mally impossible, since such guideways as railway tracks and
overhead power lines are supported elastically. The method devel-
oped in �9,10� requires the parameter variation be small with re-
spect to the mean value, which is not realistic either. The method
proposed in �11� is approximate since it does not account for the
dependence of the dynamic stiffness of the elastic system on its
interaction with the load. Thus, to the knowledge of the author of
this paper, no published account exists of a general method, which
would allow study of the dynamic stability of a load on a periodi-
cally inhomogeneous system.

In this paper, a method is proposed that allows one to find the
instability zones of a moving particle on a periodically supported
string. The supports are discrete and not rigid. The adopted model
represents simplistically the dynamic interaction of an overhead
power line and the current collector of a train.

The proposed method can be straightforwardly extended in the
future to cope with other periodically inhomogeneous structures
and more complex load descriptions provided that the load and the
elastic structure have only one contact point. In the case of mul-
tiple contact points, the extension is somewhat more cumbersome.

This paper is structured as follows. In Sec. 2, the governing
equations are given and the idea of the proposed method is ex-
plained. In Secs. 3 and 4, the equations are obtained, which de-
termine the system parameters corresponding to the boundaries of
the instability zones. The method of numerical analysis of these
equations is discussed in Sec. 5. In Sec. 6, a parametric analysis of
the instability zones is presented. To explain qualitatively the po-
sition of the instability zones in the parameter space, a corre-
sponding simplified model is studied analytically in Sec. 7. A
short discussion of the engineering relevance of the obtained re-
sults concludes the paper.
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2 Equations of Motion
Referring to Fig. 1, we consider a particle that uniformly moves

along a taut, periodically supported string. The linear dynamics of
this system is governed by the following set of nondimensional
equations

���w − ���w = − M��� − ���d��w0

���w��=m = �msd�� + csd� + ks�w�m,��

�w��=m = 0, w0��� = w���,�� �1�

The first equation of this system governs the string dynamics un-
der the moving particle. The second equation is the balance of
vertical forces at the supported points of the string. The third
equation ensures the string continuity, whereas the fourth equation
states that the particle and the string are always in contact.

In Eqs. �1�, w�� ,�� and w0��� are the vertical displacements of
the string and the moving mass, respectively; � and � are the
nondimensional coordinate and time; M and � are the nondimen-
sional mass and speed of the particle; ms, cs, and ks are the non-
dimensional mass, viscous damping coefficient, and stiffness of
each support; �=m is the position of the support number m, m
=0, ±1, ±2, . . . ; ��=� /��, ��=� /��, d�=d /d�; ��¯� is the Dirac
delta function, and the square brackets imply the following differ-
ence �f�����=m= f�m+0�− f�m−0�.

The relations between the nondimensional and original vari-
ables and parameters are given as

� =
tc

d
, � =

x

d

� =
V

c
, M =

M0

d�A

ms =
m0

d�A
, ks =

k0d

T
, cs =

c0c

T
�2�

where d is the distance between two neighboring supports, c is the
wave speed in the string �c=�T /�A�, T and �A are the tension and
the mass per unit length of the string, M0 and V are the mass and
speed of the particle, and m0, c0, and k0 are the mass, viscous
damping coefficient, and stiffness of each support.

Note that no external vertical forces, which may act on the
string and particle, are accounted for in the equations of motion.
These forces do not influence the dynamic stability of the system
in the linear approximation and, therefore, can be omitted as long
as only the system stability is addressed.

It is obvious that if the moving particle is disturbed from its
horizontal motion, it will excite waves in the string. The reaction
of these waves will either decrease the energy of the transverse
particle vibration or increase it. The latter option is possible
thanks to the external energy source that must be present to main-
tain a constant speed of the particle along the string. If this option
is realized, the system will be unstable. To find the boundaries of
the instability domains in the space of system parameters, a rela-

tionship between these parameters has to be found that corre-
sponds to a periodic in time transverse motion of the particle.

In this paper, we postulate that the period of the above motion
should be either equal to or twice bigger than d /V, which is the
period of variation of the string parameters under the particle. This
postulate is justified by a clear analogy with vibrations of a mass
on a spring with periodically varying in time stiffness, which is
described by Hill’s equation or Mathieu’s equation. For these
equations it is known that the boundaries of all instability zones
correspond to the mass vibrations with the period that is equal to
or twice bigger than the period of the stiffness variation. Note that
if not the particle but a multi-degree-of-freedom oscillator would
move on the string, periodic motions with other periods would
also be possible.

Exploiting the postulated analogy, we represent the particle
transverse motion with the periodicity 2d /V by the following Fou-
rier series:

w0��� = �
n=1

�

�An sin �����2n − 1�� + Bn cos �����2n − 1��� �3�

The form of this series directly follows from the Floquet theorem
provided that it is applied to a single degree of freedom system
�8�.

Analogously, d /V-periodic motions can be represented as

w0��� = B0 + �
n=1

�

�An sin �2���n� + Bn cos �2���n�� �4�

The above expression will be used in the next sections to obtain
infinite determinants �analogous to Hill’s determinants�, using
which the boundaries of the instability zones will be found.

3 2d ÕV-Periodic Boundaries
In this section, the instability zones whose boundaries corre-

spond to 2d /V-periodic motions are addressed. The analysis is
based on finding the response of the string to the particle vibration
described by Eq. �3� with the subsequent application of the con-
dition of contact between the particle and the string.

For the analysis to follow, it is customary to rewrite Eq. �3� in
the following complex form:

w0��� = �
n=1

�

�Cn
+ei����2n−1� + Cn

−e−i����2n−1�� �5�

where

Cn
+ =

Bn − iAn

2
, Cn

− =
Bn + iAn

2
�6�

Substituting Eq. �5� into the governing equations, Eqs. �1�, and
applying integral Fourier transform over time that is defined as

w�����,�� =	
−�

�

w��,�� exp �i��� d� �7�

we obtain the following system of equations in the frequency
domain:

���w
��� + w����2 = − 
M

�
� exp �i��/���

n=1

�

����2n − 1��2

	�Cn
+ei���2n−1� + Cn

−e−i���2n−1�� �8�

���w
�����=m = �− m�2 − i�c + k�w����m,��

�w�����=m = 0 �9�
Note that the condition of contact between the moving particle
and the string is not transformed to the frequency domain. This
condition will be used later.

Fig. 1 Model
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To find the solution of the system of equations �8� and �9�, we
will employ the so-called periodicity condition, which is often
used for finding the steady-state response of periodically inhomo-
geneous guideways to a uniformly moving harmonic load �see
�12–15��. It is natural to use this condition for solving Eqs. �8� and
�9�, because having assumed the periodicity of the particle vibra-
tion, we effectively represented the force imposed by the particle
on the string as the superposition of harmonic loads.

The periodicity condition, which satisfies the system of equa-
tions �8� and �9�, as can be readily checked by direct substitution,
reads

w������ = − w����� − m� exp 
 i�m

�
� �10�

To obtain the solution to the problem governed by Eqs. �8� and
�9� that satisfies the periodicity condition, the following steps will
be undertaken. Firstly, the general solution to Eq. �8� will be writ-
ten in the interval 0
�
1. This solution will contain two un-
known coefficients. Secondly, this solution will be “extended” to
the interval 1
�
2 by employing the periodicity condition. The
solution in the latter interval will contain the same unknown co-
efficients. Finally, these coefficients will be found using the
boundary conditions at �=1, Eq. �9�.

The general solution of Eq. �8� in the interval 0
�
1 can be
written as

w��� = D1ei�� + D2e−i�� + wf
��� �11�

where

wf
��� = �

n=1

�

ei��/��En
+ei���2n−1� + En

−e−i���2n−1�� �12�

En
± = MZn

±Cn
±, Zn

± =
����2n − 1��2�

�� ± ���2n − 1��2 − �2�2 �13�

Using the periodicity condition this solution can be extended to
the interval 1
�
2 to give

w��� = − ei�/��D1ei���−1�/� + D2e−i���−1�/�� + wf
������ �14�

Now, using the boundary conditions at �=1 given by Eq. �9�, we
can obtain the following system of two algebraic equations with
respect to D1 and D2:

D1q +
D2

q
= − p�D1 + D2�

− p�D1 − D2� − 
D1q −
D2

q
� = F
D1q +

D2

q
− p�

n=1

�

�En
+ + En

−��
�15�

where

q = ei�, p = ei�/�, F =
− ms�

2 − i�cs + ks

i�
�16�

The solution of this system can be written as

D1 = 
 F

�2
�
p +

1

q
��

n=1

�

�En
+ + En

−�

D2 = − 
 F

�2
��q + p��

n=1

�

�En
+ + En

−�

�2 = 4�cos 
�

�
� + cos ��� +

iF sin ���
2


 �17�

Thus, we found the string response in the frequency domain.
Applying the inverse Fourier transform to Eq. �11�, the follow-

ing expression is obtained, which governs the motion of the first
span of the string �0
�
1� in the time domain:

w��,�� =
1

2�
	

−�

� �e−i��
D1ei�� + D2e−i�� + �
n=1

�

ei��/��En
+ei���2n−1�

+ En
−e−i���2n−1���
 d� �18�

The displacement of the mass during the time interval 0��
�1 /� �when the mass moves over the first span� can be obtained
from Eq. �18� using the condition of permanent contact between
the particle and the string:

w0��� = w���,�� =
1

2�
	

−�

� 
D1e−i��1−��� + D2e−i��1+���

+ �
n=1

�

�En
+ei����2n−1� + En

−e−i����2n−1��� d� �19�

Substituting into Eq. �19� the expression for the particle displace-
ment, Eq. �6�, and using expressions �13� and �17�, we can rewrite
Eq. �19� as

�
n=1

�

�An sin �����2n − 1�� + Bn cos �����2n − 1���

= i
M

4��
n=1

�

An	
−�

� �− Zn
+ei����2n−1� + Zn

−e−i����2n−1�

+
F

�2
�Zn

− − Zn
+��
p +

1

q
�e−i��1−��� − �q + p�e−i��1+���
�d�

+
M

4��
n=1

�

Bn	
−�

� �− Zn
+ei����2n−1� + Zn

−e−i����2n−1�

+
F

�2
�Zn

− + Zn
+��
p +

1

q
�e−i��1−��� − �q + p�e−i��1+���
� d�

�20�

Note that both terms on the right-hand side should be real to
comply with the real-valued left-hand side.

Our aim is to formulate an infinite set of homogeneous alge-
braic equations with respect to An and Bn, the determinant of
which will be the direct analogy of Hill’s infinite determinant.
Such formulation is somewhat complicated by the explicit pres-
ence of time in the integrals. To circumvent this problem, we
multiply Eq. �20� by sin �����2m−1�� and then integrate over the
period of the vibration �2��0

1/�
¯ d��. This yields

Am = M
�
n=1

�

AnQnm
�1� + �

n=1

�

BnQnm
�2�� �21�

where

Qnm
�1� =

i�

2�
	

−�

� �−
i�Zn

+ + Zn
−��mn

2�
+

F

�2
�Zn

− − Zn
+�

	�
p +
1

q
�Rm

�1� − �q + p�Rm
�2�
� d� �22�

Journal of Applied Mechanics JANUARY 2008, Vol. 75 / 011006-3

Downloaded 04 May 2010 to 171.66.16.43. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



Qnm
�2� =

�

2�
	

−�

� � i�Zn
+ − Zn

−��mn

�2��
+ �F/�2��Zn

− + Zn
+�

	�
p +
1

q
�Rm

�1� − �q + p�Rm
�2�
� d� �23�

Rm
�1� =

− ���2m − 1�
�� − ���2 − ����2m − 1��2 �1 + e−i��1−��/�� �24�

Rm
�2� =

− ���2m − 1�
�� + ���2 − ����2m − 1��2 �1 + e−i��1+��/�� �25�

and �mn is the Kronecker Delta.
Analogously, multiplication by cos �����2m−1�� followed by

integration 2��0
1/�

¯ d� reduces Eq. �20� to

Bm =
M�

2�

�

n=1

�

AnQnm
�3� + �

n=1

�

BnQnm
�4�� �26�

where

Qnm
�3� =

i�

2�
	

−�

� �−
�Zn

+ − Zn
−��mn

2�
+

F

�2
�Zn

− − Zn
+�

	�
p +
1

q
�Rm

�3� − �q + p�Rm
�4�
� d� �27�

Qnm
�4� =

�

2�
	

−�

� � �Zn
+ + Zn

−��mn

2�
+

F

�2
�Zn

− + Zn
+�

	�
p +
1

q
�Rm

�3� − �q + p�Rm
�4�
� d� �28�

Rm
�3� =

− i��1 − ��
�� − ���2 − ����2m − 1��2 �1 + e−i��1−��/�� �29�

Rm
�4� =

− i��1 + ��
�� + ���2 − ����2m − 1��2 �1 + e−i��1+��/�� �30�

Equations �21� and �26� form an infinite set of homogeneous al-
gebraic equations with respect to An and Bn, which can be written
in the following matrix form:


Q�1� −
I

M
�A + Q�2�B = 0

Q�3�A + 
Q�4� −
I

M
�B = 0 �31�

where the components of matrices Q are given by Eqs. �22�, �23�,
�27�, and �28�, I is the identity matrix, A= �A1 ,A2 ,A3 , . . . �T, and
B= �B1 ,B2 ,B3 , . . . �T. Note that all matrices in Eqs. �31� are real.

In order to guarantee a nontrivial solution of Eqs. �31�, the
determinant of this system of equations must vanish, e.g., the
following equation must be satisfied:

�Q3 − Q4Q2
−1Q1 −

1

M2Q2
−1 +

1

M
�Q4Q2

−1 + Q2
−1Q1�� = 0 �32�

Equation �32� is an analog of the infinite Hill’s determinant. The
system parameters that satisfy this equation represent the bound-
aries separating stability and instability in the parameter space.
The points of these boundaries correspond to the periodic motions
of the particle with periods equal to 2d /V.

4 d ÕV-Periodic Boundaries
The boundaries corresponding to d /V-periodic motions of the

particle can be derived assuming the Fourier series representation
for the particle deflection given by Eq. �4�. Rewriting this equa-
tion as

w0��� = B0 + �
n=1

�

�Cn
+e2i���n + Cn

−e−2i���n� �33�

we can proceed along the same lines as in the previous section.
The only difference to be noted is that the sign in the periodicity
condition, Eq. �10�, will change and this condition will take the
form

w������ = w����� − m� exp 
 i�m

�
� �34�

The resulting infinite determinant has exactly the same shape as
given by Eq. �32� and reads

�S3 − S4S2
−1S1 −

1

M2S2
−1 +

1

M
�S4S2

−1 + S2
−1S1�� = 0 �35�

where the components of S matrices are given as

Snm
�1� =

i�

2�
	

−�

� �− i�Yn
+ + Yn

−��mn

2�
+

F

�1
�Yn

− − Yn
+�

	�
p −
1

q
�Pm

�1� + �q − p�Pm
�2�
� d� �36�

Snm
�2� =

�

2�
	

−�

� � i�Yn
+ − Yn

−��mn

2�
+

F

�1
�Yn

− + Yn
+�

	�
p −
1

q
�Pm

�1� + �q − p�Pm
�2�
� d� �37�

Snm
�3� = 
 i�

2�
�	

−�

� �− �Yn
+ − Yn

−��mn

2�
+

F

�1
�Yn

− − Yn
+�

	�
p −
1

q
�Pm

�3� + �q − p�Pm
�4�
� d� �38�

Snm
�4� = 
 �

2�
�	

−�

� � �Yn
+ + Yn

−��m

2�
+

F

�1
�Yn

− + Yn
+�

	�
p −
q

1
�Pm

�3� + �q − p�Pm
�4�
� d� �39�

in which

Pm
�1� =

− 2��m

�� − ���2 − �2��m�2 �1 − e−i��1−��/�� �40�

Pm
�2� =

− 2��m

�� + ���2 − �2��m�2 �1 − e−i��1+��/�� �41�

Pm
�3� =

− i��1 − ��
�� − ���2 − �2��m�2 �1 − e−i��1−��/�� �42�

Pm
�4� =

− i��1 − ��
�� + ���2 − �2��m�2 �1 − e−i��1+��/�� �43�

Yn
± =

�2��n�2�

�� ± 2��n�2 − �2�2 �44�
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�1 = 4
cos ��/�� − cos ��� −
iF sin ���

2
� �45�

The system parameters that satisfy Eq. �35� represent the bound-
aries separating stability and instability in the parameter space.
The points of these boundaries correspond to the periodic motions
of the particle with periods equal to d /V.

5 Method of Numerical Analysis
The system at hand is characterized by five dimensionless pa-

rameters, namely the particle mass M, its velocity �, and three
parameters of the supports: ms, cs, and ks. The instability zones
will be analyzed in the plane �� ,M� for a number of characteristic
values of the support parameters. The procedure of finding the
boundaries of the instability zones is as follows. Taking advantage
of the fact that the mass M does not enter the Q and S matrices,
these matrices are first calculated and stored for a number of val-
ues of �, keeping the support parameters unchanged. We varied �
from 0.1 to 0.95 with the step 0.003. After having stored the
values of the Q and S matrices, a loop with respect to M was
organized, with the aim to find for each value of � those values of
M that turn the determinants in Eqs. �32� and �35� to zero. Since
these determinants are of infinite matrices, it is necessary to limit
the number of matrix elements to be accounted for. Based on our
analysis, the 15	15 matrices are sufficient to give relatively ac-
curate estimations. However, to obtain smooth curves in the vi-
cinity of the “tips” of the instability zones �see Fig. 2 in the next
section�, we used 25	25.

Numerical analysis of Eqs. �32�–�35� is somewhat complicated
by the fact that each element of the matrices Q and S is an integral
with infinite limits. These integrals have to be calculated many
times to locate the boundaries of the instability zones. This pro-
cedure would be time expensive if the integrals would be calcu-
lated using a direct integration routine. Fast Fourier transform
�FFT� is also not the best option, since the functions to be inte-
grated have multiple peaks and the FFT analysis would require a
substantial number of points to reach sufficient accuracy. There-
fore, in this paper, the contour integration method �16� is em-
ployed. It is adequate and efficient to apply this method because
all integrals in the matrices Q and S have exactly the same poles.
Therefore, for every combination of the system parameters, one
has to find the poles only once and then use them for calculation
of all integrals. Our analysis showed that only zeroes of �1 and �2
contribute to the integration result, whereas zeroes of Zn

± and Yn
±

do not. This is natural, since these are the zeroes of �1 and �2 that
determine the frequencies of the waves, which the vibrating par-
ticle excites in the supported string.

To find complex zeroes of �1 and �2 the corresponding tran-
scendental equations were solved numerically. A standard minimi-
zation routine was used to find the minimums of ��1,2� from a
guessed value, which was varied in the area �Re ��� � �300,
�Im ��� � �10. To ensure that all roots in the chosen domain of the
complex � plane are found, the method of the argument �16,17�
was applied. This method allows one to find the number of com-
plex zeroes of a function within a chosen domain in a complex
plane.

6 Parametric Analysis of Instability Zones
We first consider relatively stiff, slightly damped supports,

which are characterized by the following dimensionless param-
eters: ks=200, cs=0.4, ms=0.013. The boundaries of the corre-
sponding instability zones are shown in Fig. 2 as dotted lines. The
black diamonds mark the boundaries of the first, second, and third
2d /V-periodic zones, whereas the gray circles mark the bound-
aries of the first and second d /V-periodic zones. Parametric reso-
nance �the exponential increase of the amplitude of particle vibra-
tion in time� takes place if the system parameters belong to one of
the areas within these boundaries.

Figure 2 shows five instability zones—these are all zones found
using the numerical analysis. The higher-order zones do not exist
in the chosen domain of parameters 0.1���0.95, 0�M �30.

The effect of the stiffness of the supports can be analyzed using
Fig. 3, which presents three plots corresponding to gradually de-
creasing stiffness. This figure clearly shows that the smaller the
support stiffness the narrower the instability zones. If ks�1, the
instability zones disappear from the parameter domain under con-
sideration. This phenomenon can be understood by analogy with
classical parametric resonance. Indeed, by decreasing the support
stiffness we effectively reduce the modulation depth of the param-
eters variation under the moving particle. Obviously, this must
reduce the size of the instability zones.

An important difference between the classical parametric reso-
nance and the parametric resonance considered in this paper is
related to the effect of damping. In the case of classical parametric
resonance of an undamped system, the instability zones exist even
if the parameter modulation is infinitesimal. In contrast, letting the
viscosity in the spring supports vanish will not lead to extension
of the instability zones in Figs. 2 and 3 towards the horizontal
axis. In fact, the damping used to plot this figure is sufficiently
small to represent the instability zones for zero damping.

To understand the fact that there is always a critical magnitude
of the particle mass that must be exceeded to make parametric
resonance possible, we have to go down to the physics of this
phenomenon. As explained in �13�, parametric resonance of a
moving object on a periodically inhomogeneous elastic system
occurs because of excitation of elastic waves by the moving ob-
ject. As soon as the object starts to vibrate, every transition of the
object through an inhomogeneity �a support, for example� is ac-
companied by excitation of a wave train with continuous spec-
trum. Thanks to the spatial periodicity of the elastic system and to
the uniformity of the object motion, some frequencies of this
spectrum correspond to waves, which are excited in phase at ev-
ery transition. This leads to formation of a discrete spectrum of
waves in the elastic system. These waves are of two distinct types,
which are normally referred to as normal Doppler waves and
anomalous Doppler waves �18�. In 1D systems, the phase velocity
of the former waves is greater than the object velocity, while that
of the latter is lower. Both types of waves have an effect on the
energy of transverse vibrations of the object. The anomalous Dop-
pler waves increase this energy, whereas the normal Doppler
waves decrease it �4�. Dynamic instability �parametric resonance,
in particular� occurs if the contribution of the anomalous Doppler
waves is greater than that of the normal Doppler waves. On the

Fig. 2 Instability zones for stiff supports
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boundaries of instability zones these contributions are equal. In
periodically inhomogeneous systems, the moving object excites
both types of waves simultaneously, whatever is its velocity. The
presence of the normal Doppler waves implies that there is always
a certain amount of radiation damping. That is why, even in the

absence of the viscous damping in the supports, a small-mass
particle cannot experience instability. It is simply unable to excite
powerful enough anomalous Doppler waves to overcome the ra-
diation damping due to normal Doppler waves.

The effect of the increase of the viscous damping in the string
supports is also worth demonstrating. This is shown in Fig. 4, in
which only 2d /V-periodic boundaries are shown for two values of
the damping coefficient cs.

A relatively small viscosity cs=0.4 corresponds to two instabil-
ity zones bounded by the black boundaries. The viscosity increase
to cs=8 removes the smaller instability zone but widens the main
instability zone. The latter effect may be called destabilization by
viscosity. It is not unexpectable since by increasing the viscosity,
we not only increase the global energy dissipation in the system
but also increase the energy of waves excited in the string when
the particle passes the supports. In fact, by increasing the viscosity
we increase the dynamic stiffness of the supports, which, in turn,
increases the radiation energy. Given higher radiation energy, it is
natural to expect a wider instability zone.

7 Analytical Assessment of Parameters Leading to
Parametric Resonance

In this section, the position of the instability zones in
�� ,M�-plane is explained qualitatively. To this end, the natural
frequency 
 of the particle on the string is found analytically
considering a “smeared” model for the string support. In this
model, the inertia and damping of the supports are neglected and
the discrete supports are replaced by a corresponding continuous
elastic foundation with stiffness k0 /d. The natural frequency
found using this model is then compared to the frequency d /V of
the parameters variation under the moving mass of the original
discretely supported string.

The system parameters leading to parametric resonance are as-
sessed by analyzing the following equation:

2
 �
2�nV

d
, n � N �46�

Equation �46� is the classical condition of parametric resonance,
which implies that the dynamic instability governed by this phe-
nomenon may occur if the frequency of parameter variation mul-
tiplied by an integer approximately equals the doubled natural
frequency of the system.

Free transverse vibrations of the moving mass on the continu-
ously supported string are governed by the following equations

Fig. 3 Effect of the support stiffness

Fig. 4 Effect of the support viscosity
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���w − ���w + ksw = − M��� − ���d��w0

w0��� = w���,�� �47�

where the same notations are used as in Eq. �1�.
The fundamental solution to the operator ���−���+ks, according

to �19�, reads J0��ks
��2−�2�H��− �� � � /2 where J0 is the Bessel

function of the first kind of zeroth order and H is the Heaviside
function. Using this fundamental solution, the solution to the first
equation of Eq. �47� can be written as

w��,�� = −
M

2 	
0

�	
−�

�
d2w0

d�̃2 ���̃ − ��̃�

	 H�� − �̃ − �� − �̃��J0��ks
��� − �̃�2 − �� − �̃�2� d�̃ d�̃

= −
M

2 	
0

�
d2w0

d�̃2 J0��ks
��� − �̃�2 − �� − ��̃�2�

	 H�� − �̃ − �� − ��̃�� d�̃ �48�

Substituting into this equation �=�� and using the condition of
contact between the mass and the string �the second equation in
Eq. �47��, we obtain the following integro-differential equation:

w0��� = −
M

2 	
0

�
d2w0

d�̃2 J0��ks
�1 − �2�� − �̃�� d�̃ �49�

This equation governs free transverse vibrations of the moving
particle on the continuously supported string, taking no account of
initial conditions �there is no need to account for those since we
are interested in the natural frequency only�.

The integral in Eq. �49� is of the convolution type. Therefore,
the characteristic equation governing the eigenvalues of the par-
ticle transverse motion can be obtained by the direct application of
the Laplace transform to Eq. �49�. This gives

1 +
�M/2�s2

�s2 + ks�1 − �2�
= 0 �50�

where s is the Laplace variable. Replacing it by i
 and resolving
Eq. �50� with respect to M, the following relationship is obtained
between the mass M and the nondimensional natural frequency of
the mass vibration:

M =
2�− 
2 + ks�1 − �2�


2 �51�

Substituting into this equation 
=n��, where 
 is given by Eq.
�46�, the following relation between � and M is obtained that may
be expected to lead to parametric resonance:

M =
2�− �n���2 + ks�1 − �2�

�n���2 �52�

The curves corresponding to the main instability zone �n=1� are
shown in Fig. 5 as solid lines for two values of the support stiff-
ness. For comparison, the corresponding boundaries of the insta-
bility zones found using the original model are also plotted as
dotted lines.

We can see from Fig. 5 that the curves found analytically give
the same trend of M −� dependence as the numerically found
boundaries. The smaller the support stiffness, the better the sim-
plistic analytical prediction. The major drawback of the analyti-
cally found prediction is that it suggests that instability can be
expected at infinitesimal magnitudes of the mass. This drawback,
however, is to be expected as the analytical model cannot capture
the multimode dynamics of the system at low magnitudes of the
particle mass.

8 Conclusions
In this paper, a new method has been presented of finding the

boundaries of instability zones for an object that uniformly moves
on a periodically supported structure. To demonstrate this method,
a simple example has been considered of a particle moving on a
string. The presented method can be straightforwardly applied to
more complicated systems provided that the structure is one-
dimensional and the moving object has only one contact point
with the structure.

The model considered in this paper mimics simplistically the
dynamic interaction of an overhead power line and the current
collector of a train. The parameters of the supported string closely
resemble those of a realistic overhead wire system suspended on
the so-called rubber-damping hangers �20�. The wave speed in the
contact wire discussed in �20� is about 95 m /s. This means that
the main instability zone �40–70% of the wave speed� corresponds
to the train speeds of 38–66 m /s, which belong to the operation
range of modern high-speed trains.

The stiffness and viscosity of the current collector have been
disregarded. Because of the latter, the obtained results cannot be
applied directly in engineering practice. The mechanical proper-
ties of the current collector have a crucial effect on the system
stability and can be tuned to ensure stability of current collection
even in the case of relatively stiff hangers. This will be shown in
a follow-up paper, in which both the multi-degree-of-freedom
character of the current collectors as well as a multi-level charac-
ter of modern overhead power lines will be accounted for.
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Flexural Resonant Frequencies
of Thin Rectangular Cantilever
Plates
Knowledge of the flexural vibration frequencies of thin rectangular cantilever plates
forms the basis for numerous applications in sensing and instrumentation. Despite the
seemingly simple nature of the problem, an accurate formula for the fundamental reso-
nant frequency that is valid for all aspect ratios and Poisson’s ratios is notably lacking in
the literature. In this article, we present such a result using a variational and singular
perturbation formulation. This yields a simple analytical formula that exhibits a maxi-
mum error of 2%. �DOI: 10.1115/1.2745377�

1 Introduction
Cantilever plates form the basis for numerous industrial and

scientific applications ranging from their use in aerospace tech-
nologies �1� through the monitoring of biological processes such
as DNA hybridization �2�, mass measurements with attogram sen-
sitivity �3�, and the imaging of surfaces with atomic resolution �4�.
Fundamental to many of these applications is the knowledge of
the resonance characteristics of the cantilever. While classical
beam theory can be used when the aspect ratio �length/width� is
large, an accurate analytical formulation for arbitrary aspect ratio
is lacking in the literature.

Classical exact solutions to the thin plate equations for rectan-
gular plates are known for cases when all edges are free, simply
supported or clamped, where Fourier analysis can be used �5,6�.
However, the mixed boundary conditions of the cantilever prob-
lem precludes the use of such elementary techniques. As such, an
exact analytical solution to the cantilever problem mimicking the
simplicity of these classical results has proven elusive. Even ap-
proximate methods frequently rely on sophisticated and computa-
tionally intensive numerical schemes.

While a vast amount of work has appeared on the free vibration
of rectangular plates, very few explicit approximate formulas ex-
ist. The first such formula appeared when Warburton �7� used
characteristic beam vibration functions in conjunction with Ray-
leigh’s method, to obtain a simple frequency expression for iso-
tropic rectangular plates. This formula is valid for all modes of
vibration and all of the classical boundary conditions �free,
clamped or simply supported�. Importantly, a dimensionless fre-
quency parameter that depends on aspect ratio, Poisson’s ratio,
mode number, and the boundary conditions is used. However, for
a cantilever, Warburton’s frequency parameter is independent of
aspect ratio and Poisson’s ratio, and therefore cannot be uniformly
valid for these quantities.

The accuracies of Warburton’s formulas have also been shown
to diminish if one or more free edges exist �7–10�. As such, this
model is clearly of limited use for rectangular cantilevers. War-
burton’s research spawned two other papers that contain explicit
formulas. Dickinson �9� extended Warburton’s result to account
for specially orthotropic plates and uniform direct in-plane forces.
Kim and Dickinson �10� improved the accuracy of Dickinson’s
result by using three terms in the Rayleigh-Ritz method. However,
for the scenarios considered, the increase in accuracy was less

than 1%. Jänich �11� published another set of explicit formulas for
the fundamental mode for 18 combinations of boundary condi-
tions, including the cantilever. These formulas were derived using
Rayleigh’s method with simple trigonometric functions represent-
ing the deflection; it has since been shown that mode shapes are
better approximated by beam functions �8�. As with the case for
Warburton’s formula, Jänich’s frequency parameter is independent
of aspect ratio for the cantilever case; the formulas are also only
valid for a Poisson’s ratio of 0.25. Thus, Jänich’s formulas are of
less practical value than those of Warburton, which we have al-
ready shown to be limited when applied to cantilevers.

There is clearly a need for an accurate, explicit, frequency ex-
pression for rectangular cantilever plates that is valid for arbitrary
aspect ratio and Poisson’s ratio. Reissner and Stein �1� developed
such a model describing torsional vibration. In this paper, we de-
velop Reissner’s idea to encompass the flexural vibration of thin
rectangular plates. However, unlike the torsional case, the flexural
problem requires the use of advanced asymptotic techniques to
handle the singular nature of the mixed boundary value problem.
This in turn results in a simple analytical formula that is valid for
all aspect ratios and Poisson’s ratio, that exhibits a maximum error
of �2% in comparison to rigorous finite element analysis of the
governing thin plate equations. While we focus on the fundamen-
tal flexural mode of the cantilever due to its ubiquitous use in
applications, we derive a general expression valid for all mode
numbers whose deflection functions possess nodes approximately
parallel to the clamped edge. The cantilever is composed of a
linearly elastic homogeneous isotropic material of constant thick-
ness. A schematic illustration of the cantilever geometry is given
in Fig. 1.

2 Analysis
In this section we use the small-deflection theory of thin plates,

the principle of least action �12� and the calculus of variations
�13� to derive new governing equations that approximately de-
scribe the flexural vibrational modes for large but finite aspect
ratio. To solve this system of equations we then employ a singular
perturbation approach yielding a result that converges to the stan-
dard beam theory deflection function and frequency expression as
the aspect ratio of the cantilever A=L /b→�. In doing so, we also
establish that the resulting next order correction to the beam fre-
quency formula is O�1 /A�, a previously unknown result. Finally,
we use this asymptotic expression together with the exact
asymptotic solution for A→0 to derive a simple yet accurate ana-
lytical formula ��2% error� that is valid for arbitrary aspect ratio
and Poisson’s ratio.

2.1 Governing Equation L Õbš1. Since the thickness of the
plate is small compared to its other linear dimensions and the
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deflection is assumed much smaller than the plate thickness, it is
analyzed using classical small-deflection plate theory. The origin
of the coordinate scheme is centered at the fixed end of the can-
tilever �x=0�, so that x� �0,L� and y� �−b /2,b /2�; see Fig. 1.
We only consider deflections w�x ,y , t� perpendicular to its plane,
i.e., in the z direction, where t is time.

We begin by formally expressing the deflection function as a
series expansion in the y coordinate. Since we only consider flex-
ural vibrations, the deflection function must be symmetric about
the x axis and therefore an even function of y, i.e.,

w�x,y,t� = �
n=0

N

w2n�x,t�y2n �1�

The first two terms in this series are then retaining as a leading
order approximation to the true deflection function

w�x,y,t� � w0�x,t� + y2w2�x,t� �2�
The kinetic energy of the cantilever is given by

KE =
1

2
h�� �

�

� �w

�t
	2

dxdy �3�

where h is the thickness of the cantilever, � is its density, and �
= �0,L�� �−b /2,b /2� is the surface of the cantilever. The poten-
tial energy can be expressed as �14�

PE =
1

2
D� �

�


� �2w

�x2 +
�2w

�y2 	2

− 2�1 − ��� �2w

�x2

�2w

�y2

− � �2w

�x�y
	2�
dxdy �4�

where D is the flexural rigidity

D =
Eh3

12�1 − �2�
�5�

E is Young’s modulus, and � is Poisson’s ratio. Recall that �

��0, 1
2
� for most materials. To complete the formulation, we use

the action integral

A =�
0

T

KE − PE dt �6�

where KE and PE are defined by Eqs. �3� and �4�, and T is the
period of vibration.

We first substitute Eq. �2� into A and perform the y integration.
The governing equations and boundary conditions are then ob-
tained by determining the necessary conditions on w0 and w2 such
that A attains a minimum. This is achieved using the calculus of

variations and results in two coupled fourth order linear homoge-
neous partial differential equations. To simplify these equations
we introduce the following scaled variables:

x̂ =
x

L
ŷ =

y

L
t̂ =� D

h�

t

L2 ŵ0 = w0 ŵ2 = L2w2 �7�

The governing equations can then be reduced to ordinary differ-
ential equations by searching for solutions satisfying

ŵ0�x̂, t̂� = f�x̂�eikt̂ and ŵ2�x̂, t̂� = g�x̂�eikt̂ �8�

where k is the scaled frequency parameter, or eigenvalue. The
above transformations reduce the governing equations and bound-
ary conditions to

�2 d4f

dx4 +
3�4

20

d4g

dx4 + 24�
d2f

dx2 + �2�12� − 8�
d2g

dx2 + 48g − �2k2f

−
3�4

20
k2g = 0 �9�

d4f

dx4 +
�2

12

d4g

dx4 + 2�
d2g

dx2 − k2f −
�2

12
k2g = 0 �10�

f�0� = 0 �11�

g�0� = 0 �12�

� df

dx
�

x=0

= 0 �13�

�dg

dx
�

x=0

= 0 �14�

�� d2f

dx2 + 2�g	�
x=1

= 0 �15�

�d2g

dx2�
x=1

= 0 �16�

�� d3f

dx3 +
�2

12

d3g

dx3 + 2�
dg

dx
	�

x=1

= 0 �17�

�� �2

15

d3g

dx3 + 8�� − 1�
dg

dx
	�

x=1

= 0 �18�

where �=1 /A is a small parameter. Note that we have dropped the
carets for convenience, thus all variables shall henceforth refer to
scaled quantities. Equations �11�–�14� result from the cantilever
being clamped at x=0, while Eqs. �15�–�18� are the free edge
“natural” boundary conditions at the opposite end.

Observe from Eqs. �5�, �7�, and �8�, that the plate flexural fre-
quencies, � f, are related to k by

� f = k
h

L2� E

12�1 − �2��
�19�

2.2 Singular Perturbation Analysis. Our aim is to derive an
asymptotic expression for the flexural frequencies for finite aspect
ratio by solving Eqs. �9�–�18� for k. However, finding an exact
analytical solution to this system poses a daunting task. Impor-
tantly, the mixed boundary valued nature of the clamped and free
edge condition at x=0 induces a boundary layer in that region
where rapid variations in the deflection function occur; see Fig. 2.
This enables us to undertake a singular perturbation analysis of
Eqs. �9�–�18�, and in doing so obtain an asymptotic solution.

Define f in�x� and gin�x� to be the “inner” solutions to Eqs. �9�
and �10� within the boundary layer that satisfy the boundary con-

Fig. 1 Schematic of a thin rectangular cantilever plate with
coordinate scheme shown whose origin is at the center-of-
mass of the clamped edge. The thickness of the plate is h and
is assumed to be much smaller than the plan view dimensions
L and b.
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ditions at x=0, and define fout�x� and gout�x� to be the “outer”
solutions to Eqs. �9� and �10� that satisfy the boundary conditions
at x=1. The limiting case �=0, which is equivalent to A→�,
generates the O�1� equations. It is well known that beam theory
and plate theory become equivalent as A→�. This implies that
we must recover the beam theory result from these equations for
our model to be mathematically consistent.

We propose the following asymptotic expansions:

fout�x� � �
i=0

�

f i�x��i � → 0 �20�

gout�x� � �
i=0

�

gi�x��i � → 0 �21�

kn
2 � �

i=0

�

ui�
i � → 0 �22�

where the functions f i�x� and gi�x� are independent of �, k=kn is
the nth eigenvalue of the system and the coefficients ui depend on
n. Substituting these expansions into Eqs. �9�–�18� and equating
identical powers of � generates a system of equations. Since we
wish to obtain � f correct to O���, we solve these equations for u0
and u1 only.

2.2.1 O�1� Solution. The O�1� equations are given by

d4f0

dx4 − 	2f0 = 0 �23�

g0�x� = −
�

2

d2f0

dx2 �24�

subject to

�d2f0

dx2 �
x=1

= 0 �d3f0

dx3 �
x=1

= 0 �25�

where Eq. �24� was used in the derivation of Eqs. �23� and �25�
and 	 is defined by

	2 =
u0

1 − �2 �26�

Using the method of dominant balance, the boundary layer
thickness can be shown to be O���. Hence, within the boundary
layer, x=O���, and with our choice of length scale for y we obtain
y=O�b /L�=O���. Therefore variations in the deflection function

w with respect to x and y are comparable inside the boundary
layer. Hence Eqs. �2� and �24� suggest the following rescalings:

f in�x� = �2F�X� �27�

gin�x� = G�X� �28�

where F�X�, G�X� are O�1�, and X is the inner variable defined by

X =
x

�
�29�

This analysis indicates that f in�x�=0 up to O��2�.
Two additional boundary conditions on f0 at x=0 are required

to completely define the function throughout the interval �0,1�.
The definition of the inner variable gives

f0
in�x� = O��2� �30�

f0
in��x� = O��� �31�

since F�X�=O�1�. Equating like powers of � in Eqs. �20�, �30�,
and �31�, and applying Van Dyke’s matching rule �15� then gives

f0�0� = 0 �32�

f0��0� = 0 �33�

Combining these results produces the final governing equation
and boundary conditions for f0,

d4f0

dx4 − 	2f0 = 0 �34�

f0�0� = 0 �df0

dx
�

x=0

= 0 �35�

�d2f0

dx2 �
x=1

= 0 �d3f0

dx3 �
x=1

= 0 �36�

Equations �34�–�36� are the classical beam equation and boundary
conditions. It follows that f0 must be the beam theory deflection
function, given by

f0�x� = C1 sinh��	x� + C2 cosh��	x� + C3 sin��	x� + C4 cos��	x�

where the Ci�R are integration constants. It is well known that 	
must satisfy the following equation:

	 = zn
2

where zn is the nth positive solution to

cos z cosh z + 1 = 0 �37�

Solving Eq. �37� numerically gives z1=1.8751, z2=4.6941, z3
=7.8548, and z4=10.9955. Equation �26� implies that u0 is given
by

u0 = zn
4�1 − �2� �38�

Substituting kn=�u0 into Eq. �19� produces the O�1� flexural fre-
quency,

� f = h� E

12�
� zn

L
	2

This is the classical beam theory result as expected. Observe that
the beam flexural frequency is independent of Poisson’s ratio.
Furthermore, it can be shown that the plate flexural frequencies
are given exactly by the beam result for �=0, regardless of the
aspect ratio A. Therefore we obtain

lim
A→�

� f = � f
� = �� f��=0 �39�

where � f
� represents the beam formula. It follows that the plate

theory flexural frequency can be expressed as

Fig. 2 Schematic of cantilever showing boundary layer „“in-
ner” region… near the clamped end. The “outer” region is also
shown.
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� f
2 = � f

�2 + O��� as � → 0

2.2.2 O��� Solution. We now seek the O��� correction for � f

and so u1 must be calculated. It is easy to verify that the O���
outer equations are given by

d4f1

dx4 − 	2f1 =
u1

1 − �2 f0 �40�

g1�x� = −
�

2

d2f1

dx2 �41�

�d2f1

dx2 �
x=1

= 0 �d3f1

dx3 �
x=1

= 0 �42�

where 	 is defined by Eq. �26�. It can be seen that u1 must be
determined before Eqs. �41� and �42� can be solved. This is
achieved by making use of the Rayleigh quotient which connects
the eigenvalues to the deflection function, enabling u1 to be deter-
mined without directly solving Eqs. �40�–�42�, as we shall discuss
below.

Rayleigh’s quotient can be obtained by equating the maximum
kinetic and potential energies, and is expressed in the following
scaled form:

kn
2 =

� �
�


� �2w

�x2 +
�2w

�y2 	2

− 2�1 − ��� �2w

�x2

�2w

�y2 − � �2w

�x�y
	2�
dxdy

� �
�

w2dxdy

�43�

where the independent variables have been scaled as in Sec. 2.1, and � here is the scaled plate surface. Substituting w= f +y2g into Eq.
�43� and performing the y integration, yields

kn
2 =

�
0

1

�f��2 +
�4

80
�g��2 +

�2

6
f�g� + 4g2 + 4�f�g +

�2�

3
gg� +

2�2�1 − ��
3

�g��2dx

�
0

1

f2 +
�4

80
g2 +

�2

6
fgdx

�44�

The primes denote differentiation with respect to x. The O���
correction for kn

2 �and hence � f� can be obtained from Eq. �44�
without solving the O��� outer equations, Eqs. �40�–�42�.

Since the equations for f and g exhibit boundary layer behavior,
we split the range of integration into an inner and outer region and
employ the “summing a split range of integration” method as
described in Hinch �15�. In future we will refer to this method as
SSRI. Let 
 satisfy the relation

0 � � � 
 � 1

such that


 → 0 as � → 0

We apply the method of SSRI to the numerator of Eq. �44�. Define
the following:

PEf =�
0

1

�f��2 +
�4

80
�g��2 +

�2

6
f�g� + 4g2 + 4�f�g +

�2�

3
gg�

+
2�2�1 − ��

3
�g��2dx = PEf

in��,
� + PEf
out��,
� �45�

where

PEf
in��,
� =�

0




�f��2 +
�4

80
�g��2 +

�2

6
f�g� + 4g2 + 4�f�g +

�2�

3
gg�

+
2�2�1 − ��

3
�g��2dx �46�

PEf
out��,
� =�




1

�f��2 +
�4

80
�g��2 +

�2

6
f�g� + 4g2 + 4�f�g +

�2�

3
gg�

+
2�2�1 − ��

3
�g��2dx �47�

We first consider the integral PEf
in�� ,
�. Inside the boundary

layer, the functions f and g obey Eqs. �27� and �28� with the inner
variable satisfying X=x /�. Therefore

f in��x� = F��X� �48�

gin��x� =
1

�
G��X� �49�

gin��x� =
1

�2G��X� �50�

where the primes denote differentiation with respect to X. Equa-
tions �48�–�50� and the change of variable, x=�X, then give

PEf
in��,
� = ��

0


/�

�F��2 +
1

80
�G��2 +

1

6
F�G� + 4G2 + 4�F�G

+
�

3
GG� +

2�1 − ��
3

�G��2dX = �I1
in��,
� + O��2�

�51�

Turning our attention to PEf
out�� ,
�, recall that we are only inter-

ested in the O��� correction to the eigenvalues, u1. Hence we use
the following expansions:

fout�x� = f0�x� + f1�x�� + O��2�
�52�
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gout�x� = g0�x� + g1�x�� + O��2�

These are simply the first two terms from Eqs. �20� and �21�.
Substituting Eq. �52� into PEf

out produces

PEf
out��,
� =�




1

�f0��
2 + 4g2

2 + 4�f0�g2dx + ��



1

2f0�f1� + 8g2g3

+ 4�f0�g3 + 4�f1�g2dx + O��2�

= I0
out�
� + �I1

out�
� + O��2� �53�

Substituting Eqs. �51� and �53� into Eq. �45� gives

PEf = I0
out�
� + �I1

in��,
� + I1
out�
��� + O��2� �54�

We now consider the denominator of Eq. �44�. To begin we define

KEf =�
0

1

f2 +
�4

80
g2 +

�2

6
fgdx �55�

Observe that the integrand of KEf does not contain any deriva-
tives. We then expand f as

f�x� = f0�x� + f1�x�� + O��2� �56�

Since the inner solution for f is O��2� and the remaining terms in
the integrand of KEf are of O��2�, the functions g2 and fg will not
contribute at O���. These facts imply that we do not need to split
the range of integration of KEf. Thus

KEf =�
0

1

f0
2dx + ��

0

1

2f0f1dx + O��2� = J0 + �J1 + O��2�

�57�

A geometric series expansion can now be used to give

1

KEf
=

1

J0
−

J1

J0
2� + O��2� �58�

Substituting Eqs. �54� and �58� into Eq. �44� then gives

kn
2 =

I0
out�0�
J0

+
1

J0
�lim

�→0
I1

in��,
� + I1
out�0� −

I0
out�0�J1

J0
	� + O��2�

�59�

where we have used the definition of 
 and the continuity of I0
out

and I1
out to substitute 
=0. From this we recover the following

expression for the O��� correction for kn
2:

u1 =
1

J0
�lim

�→0
I1

in��,
� + I1
out�0� −

I0
out�0�J1

J0
	 �60�

For our method to be self-consistent we must be able to prove
that

u0 = zn
4�1 − �2� =

I0
out�0�
J0

�61�

which can be shown to be true after a significant amount of alge-
braic manipulation. By employing Eq. �34�, Eq. �36� and Eqs.
�40�–�42�, together with the additional boundary condition f1�0�
=0, and multiple integration by parts, we obtain the following
simple expressions:

I0
out�0� = �1 − �2��

0

1

�f0��
2dx �62�

I1
out�0� = − 2�1 − �2�f0��0�f1��0� + zn

4�1 − �2�J1 �63�

Substituting Eqs. �61�–�63� into Eq. �60� yields the required ex-
pression for the O��� correction for the eigenvalues,

u1 =
1

J0�lim
�→0

I1
in��,
� − 2�1 − �2�f0��0�f1��0�� �64�

Equation �64� contains two objects that are still unknown:
lim�→0 I1

in�� ,
� and f1��0�. The governing equation for f1 is a
fourth order inhomogeneous linear differential equation, where
the inhomogeneous term is proportional to f0. The inhomoge-
neous term makes its solution highly cumbersome therefore its
avoidance is desirable. This is achieved by applying Van Dyke’s
matching rule �15� to f1��x�. Using the definition of the inner vari-
able and Eq. �27�, it can be shown that

f1��0� = lim
X→�

F��X� �65�

To evaluate I1
in and f1��0�, clearly we are required to determine the

functions F and G, which necessitates solution of the inner
equations.

Substituting Eqs. �27� and �28� into Eqs. �9� and �10� we obtain

d4F

dX4 +
3

20

d4G

dX4 + 24�
d2F

dX2 + �12� − 8�
d2G

dX2 + 48G = 0 �66�

d4F

dX4 +
1

12

d4G

dX4 + 2�
d2G

dX2 = 0 �67�

subject to

F�0� = 0 F��0� = 0 G�0� = 0 G��0� = 0 �68�

where terms of O��4� have been ignored. Note that these equa-
tions are independent of the eigenvalues. Equations �66� and �67�
can now be decoupled to produce

d6G

dX6 + �̄
d4G

dX4 + 	̄
d2G

dX2 = 0 �69�

where F satisfies

d2F

dX2 =
1

24�
�−

1

15

d4G

dX4 + �8 − 10��
d2G

dX2 − 48G	 �70�

and �̄, 	̄ are given by

�̄ = 120�� − 1� 	̄ = 720�1 − �2� �71�

Equation �69� can be solved by elementary techniques. This pro-
duces an expression for G that contains six integration constants.
All but two of these constants can be determined by applying the
boundary conditions �Eq. �68��, and noting that for matching, G
can have no exponentially growing terms. The remaining two con-
stants can be found via Van Dyke’s matching rule �15�. This com-
pletely specifies G up to an arbitrary constant,

G�X� =
�zn

2C

r1 − r2
�r1�1 − exp�− r2X�� − r2�1 − exp�− r1X��� �72�

where r1 and r2 are defined by

r1 =
1
�2

�− �̄ + ��̄2 − 4	̄

�73�

r2 =
1
�2

�− �̄ − ��̄2 − 4	̄

the zn are given by Eq. �37�, and C is the arbitrary constant. This
is an eigenvalue problem and so C does not need to be deter-
mined.
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The remaining inner function F can be determined by integrat-
ing Eq. �70� twice and then substituting in G and G�. The result-
ing two integration constants can be found by applying the inner
boundary conditions for F. Therefore both F, G and any required

derivatives are completely specified. This enables the integral
I1

in�� ,
� and the boundary condition f1��0� to be evaluated. Finally,
evaluation of the remaining quantities in Eq. �64� produces the
sought after O��� correction for the eigenvalues,

u1 =
4zn

4�2�1 − �2��5�1 − �� + �1 − �2�
�3��5 − 5� − �10�2 − 5� + 3�2 + �5 − 5� + �10�2 − 5� + 3�2�

�74�

The eigenvalues can now be expressed in the following form:

kn
2 = zn

4�1 − �2��1 + F����� + O��2� as � → 0

where

F��� =
4�2��5�1 − �� + �1 − �2�

�3�1 − �2��5 − 5� − �10�2 − 5� + 3�2 + �5 − 5� + �10�2 − 5� + 3�2�
�75�

which is simply u1 /zn
4�1−�2�. We will refer to this function as the

O��� correction function for � f. Earlier we noted that

� f
2 = � f

�2 + O��� as � → 0 �76�

We can extend this classical beam theory result by substituting the
new analytic expression for kn

2 into Eq. �19�. This gives

� f
2 = � f

�2�1 + F����� + O��2� as � → 0 �77�

Alternatively, we can approximate the flexural frequencies by

� f = � f
��1 + F���

b

L
�78�

This new result gives the leading order correction to the classical
beam solution for large but finite aspect ratio A.

It can be shown that F��� behaves like �2 to leading order. Note
that F�0�=0, and so our new analytic expression conforms to the
earlier observation that � f =� f

� for �=0. Also observe that F��� is
independent of the mode of vibration.

2.3 Uniformly Valid Expression for Arbitrary Aspect
Ratio. We now derive an expression that is uniformly valid, re-
gardless of the aspect ratio A and Poisson’s ratio of the cantilever.

To achieve this, we make use of the asymptotic solutions derived
for small �see Appendix� and large aspect ratio A, and link these
solutions using a Padé approximant �15�.

The appropriate Padé approximant is given by

� � f

� f
�	2

=
a0�b0 − a0� + a1b0�

b0 − a0 + a1�
�79�

Note that Eq. �79� satisfies

� � f

� f
�	2

= a0 + a1� + O��2� as � → 0 �80�

lim
�→�

� � f

� f
�	2

= b0 �81�

Comparing Eqs. �80� and �81� with Eq. �77� and the small aspect
ratio limit from the Appendix determines the unknown coeffi-
cients a0, a1, and b0. Equation �79� then yields the following
uniformly valid analytical expression for the flexural frequencies:

� f = � f
�� 1 + Z����b/L�

1 + �1 − �2�Z����b/L�
�82�

where

Z��� =
F���

�2 =
4��5�1 − �� + �1 − �2�

�3�1 − �2��5 − 5� − �10�2 − 5� + 3�2 + �5 − 5� + �10�2 − 5� + 3�2�
�83�

and the beam theory flexural formula is given by

� f
� = h� E

12�
� zn

L
	2

�84�

It can be shown that Z��� is weakly dependent on �, and only
varies by 10% for �� �0,0.5�.

3 Results and Discussion
We now examine the accuracy of Eq. �82� by comparing it with

rigorous numerical solutions obtained using a finite element �FE�

analysis of the governing thin plate equation.2 The number of
elements in the FE method were refined systematically to ensure
an accuracy greater than 0.1%. These numerical results cover a
wide range of aspect ratios 0.02
A
50 and Poisson’s ratio 0

�
0.499 and thus permit assessment of the global validity of
Eq. �82�.

It can be seen from Eq. �78� that the correction to the classical
beam theory result is independent of mode number, and hence Eq.

2The finite element analysis was implemented using LUSAS, which is a trade-
mark of, and is available from FEA Ltd., Forge House, 66 High St., Kingston Upon
Thames, Surrey KT1 1HN, UK. Quadrilateral thin plate elements with linear inter-
polation were used throughout.
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�78� is equally valid for all modes of flexural vibration, subject to
A�1. Consequently Eq. �82�, which is valid for all A, is also
independent of mode number. However, for 0�A�1 it becomes
increasingly difficult to distinguish the higher flexural modes from
other modes of vibration. Therefore an assessment of the global
validity of Eq. �82� for all A and mode numbers is not practically
relevant. As a result we focus our assessment of the global validity
of Eq. �82� on the fundamental flexural mode, which is also of
greatest practical value in applications.

First, we note that Eq. �82� is exact in the limit of zero Pois-
son’s ratio. Results illustrating the accuracy of standard beam
theory and the new solution for Poisson’s ratio greater than zero
are given in Figs. 3 and 4. Note that as the aspect ratio A→� both
approximate formulas converge to the required numerical result,
as expected. However, as the aspect ratio A is reduced, the accu-
racy of the beam theory solution deteriorates significantly. This is
due to the assumption inherent in beam theory that nonzero
stresses exist only along the axis of the beam, which is clearly
inadequate for finite aspect ratios. In contrast, note the superior
accuracy exhibited by the new uniformly valid solution �Eq. �82��
for all aspect ratios. In particular, this solution converges to the
required numerical result as A→0 and A→�. In the intermediate
regime where A=O�1�, Eq. �82� exhibits its maximum error of
2%. Note that the error also increases with increasing Poisson’s
ratio, as expected, since the formula is exact for a Poisson’s ratio

of zero. Nonetheless, it presents a dramatic improvement on the
classical beam result, which is in error by a factor of �1−�2 as
A→0.

The analysis presented here is derived under the assumption
that the cantilever dynamics are not affected by any surrounding
medium, such as fluid. It is well known that immersion in fluid
can significantly affect the resonance characteristics of cantilever
plates, and such effects should be taken into account when using
the derived solution in practice �16,17�.

4 Conclusion
A simple uniformly valid expression for the fundamental flex-

ural vibration frequency of a thin rectangular cantilever plate has
been presented. This was derived using an accurate variational
approach based on an energy minimization principle and a singu-
lar perturbation solution. The resulting formula presents a signifi-
cant improvement over the standard beam theory result, exhibiting
a maximum error of �2%. This formula is expected to be of value
to the development and usage of applications that rely on the
resonance characteristics of thin cantilever plates, such as required
in the atomic force microscope.
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Appendix: The Limit A\0
To determine the limit A→0 ��→�� we will consider the full

dynamic plate equations �18�,

D�4w + h�
�2w

�t2 = 0

where the differential operator �4 can be expressed as

�4 =
�4

�x4 + 2
�4

�x2�y2 +
�4

�y4

The boundary conditions are

w =
�w

�x
= 0 at x = 0

�2w

�n2 + �
�2w

�s2 = 0 at free edge

�3w

�n3 + �2 − ��
�3w

�n�s2 = 0 at free edge

where n, s are the normal and tangential coordinates to the free
edge.

In the limit as A→0, no deflection in the y direction is possible
due the fact that the plate is infinitely narrow and clamped along
x=0. Therefore

w�x,y,t� → w�x,t� as A → 0

Because A→0, the edges y= ± �b /2� have a negligible effect and
can also be ignored. These observations reduce the dynamic plate
equations to

�4w

�x4 +
h�

D

�2w

�t2 = 0

w =
�w

�x
= 0 at x = 0

Fig. 3 Plot of the error in �f „Eq. „82…… with �f
�
„Eq. „84……, when

compared with finite element results �FE for the fundamental
mode „z1=1.8751…. The solid line represents �f /�FE and the
broken line represents �f

� /�FE.

Fig. 4 Plot of the error in �f „Eq. „82…… with �f
�
„Eq. „84……, when

compared with finite element results �FE for the fundamental
mode „z1=1.8751…. The solid line represents �f /�FE and the
broken line represents �f

� /�FE.
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�2w

�x2 =
�3w

�x3 = 0 at x = L

If we scale x by L and t by tc we find that

tc =
L2

h
�12�1 − �2��

E

This is precisely the same time scale that we use above. Searching
for solutions of the form w�x , t�= w̄�x�eikt, yields the following
governing equations:

d4w̄

dx4 − k2w̄ = 0

w̄ =
dw̄

dx
= 0 at x = 0

d2w̄

dx2 =
d3w̄

dx3 = 0 at x = 1

These governing equations are identically the classical beam
equation and boundary conditions with the exception of the time
scale, tc. This implies that

lim
�→�

kplate = kbeam

We therefore obtain

lim
�→�

� f =
1

tc
lim
�→�

kplate =
kbeam

tc
= h� E

12�
� zn

L
	2 1

�1 − �2
=

� f
�

�1 − �2

References
�1� Reissner, E., and Stein, M., 1951, “Torsion and Transverse Bending of Canti-

lever Plates,” N.A.C.A. Technical Note 2369.
�2� Fritz, J., Baller, M. K., Lang, H. P., Rothuizen, H., Vettiger, P., Meyer, E.,

Guentherodt, H. J., Gerber, C., and Gimzewski, J. K., 2000, “Translating Bio-
molecular Recognition Into Nanomechanics,” Science, 288�5464�, pp. 316–
318.

�3� Ilic, B., Craighead, H. G., Krylov, S., Senaratne, W., Ober, C., and Neuzil, P.,
2004, “Attogram Detection Using Nanoelectromechanical Oscillators,” J.
Appl. Phys., 95�7�, pp. 3694–3703.

�4� Giessibl, F. J., 1995, “Atomic-Resolution of the Silicon �111�-�7�7� Surface
by Atomic-Force Microscopy,” Science, 267�5194�, pp. 68–71.

�5� Levy, M., 1899, “Sur l’Équilibre Élastique d’Une Plaque Rectangulaire,” C. R.
Acad. Sci. Hebd Seances Acad. Sci. D, 129, p. 535.

�6� Jaramillo, T. J., 1950, “Deflections and Moments Due to a Concentrated Load
on a Cantilever Plate of Infinite Length,” ASME J. Appl. Mech., 17�1�, pp.
67–72.

�7� Warburton, G. B., 1954, “The Vibration of Rectangular Plates,” Proc. Inst.
Mech. Eng., 168, pp. 371–384.

�8� Leissa, A. W., 1973, “Free Vibration of Rectangular-Plates,” J. Sound Vib.,
31�3�, pp. 257–293.

�9� Dickinson, S. M., 1978, “Buckling and Frequency of Flexural Vibration of
Rectangular Isotropic and Orthotropic Plates Using Rayleigh’s Method,” J.
Sound Vib., 61�1�, pp. 1–8.

�10� Kim, C. S., and Dickinson, S. M., 1985, “Improved Approximate Expressions
for the Natural Frequencies of Isotropic and Orthotropic Rectangular-Plates,”
J. Sound Vib., 103�1�, pp. 142–149.

�11� Jänich, R., 1962, “Die naherungsweise Berechnung der Eigenfrequenzen von
rechteckigen Platten bei verschiedenen Randbedingungen,” Die Bautechnik,
�3�, pp. 93–99.

�12� Feynman, R. P., Leighton, R. B., and Sands, M., 1963, The Feynman Lectures
on Physics, Addison-Wesley, Reading, MA.

�13� Smirnov, V. I., 1964, A Course of Higher Mathematics, Vol. 4, Pergamon,
Oxford.

�14� Timoshenko, S. P., and Woinowsky-Krieger, S., 1959, Theory of Plates and
Shells, McGraw-Hill, New York.

�15� Hinch, E. J., 1991, Perturbation Methods, Cambridge University Press, Cam-
bridge.

�16� Sader, J. E., 1998, “Frequency Response of Cantilever Beams Immersed in
Viscous Fluids With Applications to the Atomic Force Microscope,” J. Appl.
Phys., 84�1�, pp. 64–76.

�17� Van Eysden, C. A., and Sader, J. E., 2007, “Frequency Response of Cantilever
Beams Immersed in Viscous Fluids With Applications to the Atomic Force
Microscope: Arbitrary Mode Order,” J. Appl. Phys., 101, p. 044908.

�18� Mansfield, E. H., 1964, The Bending and Stretching of Plates, Pergamon,
Oxford.

011007-8 / Vol. 75, JANUARY 2008 Transactions of the ASME

Downloaded 04 May 2010 to 171.66.16.43. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



Yin Zhang
State Key Laboratory of Nonlinear Mechanics

(LNM),
Institute of Mechanics,

Chinese Academy of Sciences,
Beijing 100080, P.R.C.

Extended Stoney’s Formula for a
Film-Substrate Bilayer With the
Effect of Interfacial Slip
The curvature-stress relation is studied for a film-substrate bilayer with the effect of
interfacial slip and compared with that of an ideal interface without interfacial slip. The
interfacial slip together with the dimensions, elastic and interfacial properties of the film
and substrate layers can cause a significant deviation of curvature-stress relation from
that with an ideal interface. The interfacial slip also results in the so-called free edge
effect that the stress, constraint force, and curvature vary dramatically around the free
edges. The constant curvature as predicted by Stoney’s formula and the Timoshenko
model of an ideal interface is no longer valid for a bilayer with a nonideal interface. The
models with the assumption of an ideal interface can also lead to an erroneous evalua-
tion on the true stress state inside a bilayer with a nonideal interface. The extended
Stoney’s formula incorporating the effects of both the layer dimensions and interfacial
slip is presented. �DOI: 10.1115/1.2745387�

1 Introduction
Almost all solid-state electronic components have the basic

structure of a substrate as a platform for supporting various thin
film structures �1�. Stress is of a great concern for the reliability of
those composite structures �1,2�. Because the material properties
of film and substrate such as Young’s modulus, lattice parameters,
coefficients of thermal expansion can be different and residual
stress can build up during fabrication and processing, the resultant
stresses inside the film and substrate can be different and result in
the deflection of the composite structure to relax stress �3�. The
following Stoney’s 1909 formula �4� serves the cornerstone of
relating the surface stress inside the film to the curvature of a
composite structure

�St =
6f

E2t2
2 �1�

�St is the curvature and f is the force per unit length inside the
film �when the film is very thin, f is the surface stress �5��. t2 is the
substrate thickness and E2 is the substrate effective Young’s
modulus. The applicability of the above Stoney’s formula relies
on several assumptions, which are well summarized by Freund et
al. �6� as the following six: �1� both the film and substrate thick-
nesses are small compared to the lateral dimensions; �2� the film
thickness is much less than the substrate thickness; �3� the sub-
strate material is homogeneous, isotropic, and linearly elastic, and
the film material is isotropic; �4� edge effect near the periphery of
the substrate are inconsequential and all physical quantities are
invariant under change in position parallel to the interface; �5� all
stress components in the thickness direction vanish throughout the
material; �6� the strains and rotations are infinitesimally small.
Many models are developed to relax one or some of the above
assumptions to extend Stoney’s formula to a more generalized and
realistic application, for example, by considering the effects of
thin substrate �6–12�, large deformation �6�, nonisotropic stress
�13�, temperature gradient �14�, stress gradient �7,15�, residual
axial force, boundary conditions, length �5,16�, diffusion effect
�17�, and plastic deformation �18�. However, all the analyses
above �5–18� assume an ideal interface, i.e., no interfacial slip. In

those models, the condition of no interfacial slip is enforced either
explicitly by imposing the compatibility/continuity condition at
the interface �8,11,14� or implicitly by assuming one single strain/
displacement variable for both film and substrate layers
�5–7,9,10,12,13,15–18�. Compared with an ideal interface �also
called perfectly bonded interface �19� or coherent interface �20��,
a nonideal interface results in the interfacial shear and normal
stresses, which are generally zero in an ideal interface. Therefore,
the overall deflection/curvature of the composite and the stress
distribution inside it can by significantly affected. An interfacial
shear stress due to temperature gradient is shown to exist in an
ideal interface of a film-substrate bilayer by Huang and Rosakis
�14�, and this interfacial shear stress vanishes when there is no
temperature gradient. However, when there is no temperature gra-
dient, the interfacial stresses �both normal and shear� of a nonideal
interface still exist and have an influence on the stress distribution
inside the layers �3,21–24�.

Because the strains inside two solid phases separated by an
interface can be independent �20�, the continuity condition of
strain/displacement across an interface is a strong one, which al-
lows no interfacial slip. During the fabrication and processing of
film-substrate layered structures, such as chemical vapor deposi-
tion, wafer bonding, sputtering, doping/diffusion, implantation,
thermal annealing process, heteroepitaxial film growth, etc., de-
fects like dislocation �25,26�, twin �27�, cavities �25,28� appear.
Therefore, the interface may not be composed of 100% well-fused
bonds �28–30�. The formation of amorphous layer and dangling
bonds in some regions between the two phases �29–31� also result
in the weakly bonded interface areas. All these above will reduce
the overall interface adhesion for sure �30�. The stress distribution
inside the film calculated from the ideal interface model has been
shown to deviate significantly from the experimental observation
of a Cu–Si composite with the size of several microns �23,24�,
which will also lead to a different deflection/curvature from that
predicted by the ideal interface model.

The models of allowing interfacial slip are developed by Chen
and Nelson �3� and Suhir �21,22�, which are referred to as the
shear-lag �S-L� model and lap-shear �L-S� model �24�, respec-
tively. Suhir’s 1986 model gives a simple second order differential
equation for the interfacial shear stress �21�. However, its draw-
back is noticed that the interfacial peeling stress �normal to the
interface� cannot be self-equilibrated �32�. With the introduction
of “compliant interface,” Suhir’s 1989 revised model �22� leads to
a sixth order differential equation similar to that of Chen and
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Nelson �3�. The S-L model of Chen and Nelson is originally de-
veloped to study the stress distribution of two bonded joints. It
assumes that there is an isotropic layer of finite thickness between
the two joints, which plays the role of stress transfer between the
two layers. This stress-transfer layer is extended to the concept of
the interface layer �23,24� as observed by high resolution trans-
mission electron microscopy �HRTEM� that the 1–2 nm thick
amorphous layer present at the interface of two crystal material
layers �23,24,28�. The S-L model is shown to be equivalent to the
damaged interface �DI� model �33� by Tullini �34�. Müller and
Saúl give an in-depth discussion on various mechanisms causing
the damaged/nonideal interface �35�. The effect, called the bound-
ary layer effect or free edge effect unique to composite and not
observed in homogeneous solids �19� arises, which is that the
interfacial shear stress can be large and vary dramatically around
the free edges �the constraint force and deflection/curvature which
are related to the interfacial shear stress also share the similar
characteristics�. The interfacial stress is responsible for the failure
�delamination, cracking� of composite structures �1,2,19�, while,
the ideal interface model as shown later in this paper cannot pre-
dict such boundary layer effect. The boundary layer effect is in-
corporated in the functions of interfacial stresses and their detailed
solution procedures are given in this paper. This paper focuses on
the effect of the interfacial slip on the overall deflection/curvature
of the bilayer composite. The relation between the curvature and
interfacial stresses is established by relaxing the aforementioned
second, fourth and fifth assumptions given by Freund et al. �6�.
The first, third, and sixth assumptions are retained, therefore, a
beam model and related linear stress-strain relations can be ap-
plied. For the bilayer with a nonideal interface, the following two
major results are presented in this paper: �1� the curvatures of the
film and substrate with a nonideal interface can significantly de-
viate from the curvature predicated by the model of the ideal
interface; �2� unlike that the film and substrate with an ideal in-
terface share a common constant curvature; the curvatures of the
film and substrate with a nonideal interface are different in general
and vary with the length. These two results have a significant
impact on the interpretation of the experimental data of the
curvature-based measurement.

2 Model Development

2.1 Strain Distribution due to Lattice Mismatch. The lat-
tice mismatch induced deflection of a film-substrate composite
fabricated by heteroepitaxial growth is analyzed as an example to
demonstrate the effect of interfacial slip on curvature. The strains
inside the film and substrate layers are first calculated by assum-
ing no composite deflection. The composite deflection with the
presence of this calculated strain distribution is then derived in the
following two models with and without interfacial slip. The deri-
vation approach of composite deflection presented here is general,
which can be applied to the analysis of composite deflection in-
duced by other mechanisms. The lattice mismatch induced strains
inside the film and substrate have the following relations �17�:

� f − �s = �m

�2�
E1t1� f + E2t2�s = 0

� f and �s are the strains induced by lattice mismatch in the film
and substrate, respectively. �m is the mismatch strain defined as
�m= �as−af� /af �7� �af and as are the lattice parameters of the film
and substrate, respectively�. E1 and E2 are the effective Young’s
moduli of the film and substrate. When the composite is a plate
structure and under biaxial stress loading, E1=Y1 / �1−�1� and
E2=Y2 / �1−�2� are the biaxial moduli �7� �Y1 and Y2 are the
Young’s moduli of the film and substrate, respectively. �1 and �2
are their Poisson’s ratios�. When the composite plate bends to a
cylindrical surface, E1=Y1 / �1−�1

2� and E2=Y2 / �1−�2
2� �36�.

When the composite is a beam structure, E1=Y1 and E2=Y2. t1

and t2 as shown in Fig. 1�a� are the thickness of the film and
substrate. The first equation in Eq. �2� is the compatibility condi-
tion and the second one is the Newton’s third law. From Eq. �2�, � f
and �s are solved as follows:

� f = �m
E2t2

E1t1 + E2t2

�3�

�s = − �m
E1t1

E1t1 + E2t2

Clearly, � f and �s have the opposite signs, which implies that there
is a bending moment inside the film-substrate bilayer and the bi-
layer must deflect. The following derivation is about how the bi-
layer accommodates this bending moment by deflecting with and
without interfacial slip.

2.2 Timoshenko Model. The Timoshenko model �8� is essen-
tially a beam model. There is other method of solving this com-
posite bending problem, such as elasticity approach �19�. Because
the Timoshenko model uses the curvature as the unknown vari-
able, it has the advantage that the curvature is directly solved.

The equilibrium requires the balance of both force and moment,
which gives the following two equations:

F1 + F2 = 0 �4�
and

M1 + M2 − F1
t1

2
+ F2

t2

2
= 0 �5�

F1 and M1 are the force and moment per unit width acting inside
the film layer as shown in Fig. 1�a�. F2 and M2 are those inside
the substrate layer. From Eq. �4�, the following equation is de-
rived:

F1 = P�x� = − F2 �6�

Substitute Eq. �6� into Eq. �5�, it gives

Fig. 1 „a… Two coordinate systems at the mid-planes of two
layers. „b… Illustration of interfacial normal stress „�o… and
shear stress „�o… in the S-L model.
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P�x��t1 + t2�
2

= M1 + M2 �7�

The longitudinal normal strains of the two layers are expressed as
the following:

du1�x,z�
dx

= � f +
P�x�
E1t1

+
z

�

−
t1

2
� z �

t1

2

du2�x,z�
dx

= �s −
P�x�
E2t2

+
z

�

−
t2

2
� z �

t2

2
�8�

u1�x ,z� and u2�x ,z� are the longitudinal displacements of the film
and substrate, respectively. As shown in Fig. 1�a�, two sets of
coordinates are used in the Timoshenko model. zf and zs start from
the midplanes of the film and substrate, respectively. P�x� is the
constraint force per unit width. � is the radius of curvature. Be-
cause curvature �=1 /�, Eq. �8� assumes that the film and sub-
strate share a common curvature �32�.

The bending moment �Mi , i=1,2� has the following relation
with �:

Mi =
Eiti

3

12�
�9�

Substitute Eq. �9� into Eq. �7�, the following equation is obtained:

1

�
=

6P�x��t1 + t2�
E1t1

3 + E2t2
3 �10�

The compatibility condition at the interface requires that

� f +
P�x�
E1t1

+
t1

2�
= �s −

P�x�
E2t2

−
t2

2�
�11�

Equation �11� physically indicates the continuity of strain at the
interface, i.e., that there is no slip between the two layers. From
Eq. �11�, P�x� is solved as a constant as follows:

P�x� =
− �m

1/E1t1 + 1/E2t2 + 3�t1 + t2�2/�E1t1
3 + E2t2

3�
�12�

Substitute this P�x� of Eq. �12� into Eq. �10� and the curvature
��T� is solved also as a constant as the following:

�T =
1

�
=

�St�1 +
t1

t2
�

1 + 4
t1E1

t2E2
+ 6

t1
2Et

t2
2E2

+ 4
t1
3E1

t2
3E2

+
t1
4E1

2

t2
4E2

2

�13�

�St is the Stoney’s formula of Eq. �1� when f is set as f
=−�mE1t1. The Timoshenko model is a free body diagram analysis
with the introduction of constraint force P�x�. The curvature of
Eq. �13� is exactly the same as that derived by Freund and Suresh
�17� who use an energy approach. In Freund and Suresh’s deriva-
tion �7�, there is no constraint force assumed, but one displace-
ment variable is used for both film and substrate layer �therefore,
the continuity of displacement and strain at the interface is auto-
matically satisfied�, which is equivalent to the enforcement of no
interfacial slip in Eq. �11�. It is also noticed that limt1/t2→0 �T

=�St and the Timoshenko model in essence extends the Stoney
formula by relaxing the aforementioned second assumption given
by Freund et al. �6�.

2.3 S-L Model. As the S-L model is demonstrated to fit the
experimental observation much better than the L-S model �23,24�,
the S-L model is adopted here to study the interfacial slip effect.
The S-L model is rather complex and here an outline of its deri-
vation is given for reader to better understand. In the S-L model,
an interfacial layer is assumed. The interfacial normal stress
��o�x�� and shear stress ��o�x�� due to interfacial slip is illustrated
in Fig. 1�b�. With interfacial slip, the constraint condition of Eq.
�11� is invalid. �o�x� and �o�x� are related to the longitudinal and
transverse displacements of the film and substrate layers, respec-
tively. The presence of �o�x� and �o�x� changes the equation of
equilibrium of each layer as reflected in the following derivations.
Because the longitudinal and transverse displacements of the film
and substrate layers are not independent of each other, �o�x� and
�o�x� are not two independent variables, either. Therefore, the ma-
jor effort in the following derivation is actually to decouple �o�x�
and �o�x� for the solution purpose, which also results in the two
sixth order differential governing equations for �o�x� and �o�x�.

�o�x� and �o�x� have the following expressions:

�o�x� =
Eo

�
�v2�x� − v1�x�� �14�

�o�x� =
Go

�
�u1�x,

t1

2
� − u2�x,−

t2

2
�� �15�

Eo ,Go are the Young’s modulus and shear modulus of the inter-
face layer, respectively. � is the thickness of the interface layer. In
the S-L model, Eo, Go, and � are fitting factors �23,24�. The actual
varying parameters in the S-L model are Eo /� and Go /�.
u1�x , t1 /2� and u2�x ,−t2 /2� are the longitudinal displacements of
the film layer and substrate layer at the interface, respectively.
v1�x� and v2�x� are the transverse displacements of the midplanes
of the layers. The transverse displacement �vi�x�� in the S-L model
is independent of z. As indicated in Fig. 1�b� �o�x� is perpendicu-
lar to the interface and the fifth assumption of the Stoney formula
�6� is clearly violated. Also as shown later, the boundary condi-
tions are used to find �o�x� and �o�x� and the edge effects are thus
incorporated into their solutions; �o�x� and �o�x� are the functions
of x and they vary along the direction parallel to the interface. The
fourth assumption is also violated. The following derivation as the
above Timoshenko model does not need the second assumption of
very thin film thickness, either. As mentioned above, the interfa-
cial normal and shear stresses do not exist in an ideal interface
case. In Eq. �8� P is a normal constant constraint force parallel to
the interface. In the model of a film-viscous layer-rigid substrate
by Huang and Suo �37,38�, the pressure that drives the flow of
viscous layer also acts on the film in the direction perpendicular to
the interface and the flow itself provides the shear stress �parallel
to the interface� to the film layer, which resembles the functions of
�o�x� and �o�x�. Although Huang and Suo assume that the no-slip
boundary condition �at the viscous layer-rigid substrate interface�
and the elastic film is bonded to the viscous layer �37,38�, the flow
of the viscous layer in fact causes the slip between the film and
substrate.

In the S-L model, the equilibrium of moment is

dM1�x�
dx

− V1�x� −
t1

2
�o�x� = 0

�16�
dM2�x�

dx
− V2�x� −

t2

2
�o�x� = 0

M1�x� and M2�x� are the moments acting in layer 1 and 2, respec-
tively. Vi �i=1,2� stands for the vertical shear force per unit
width. The vertical force equilibrium requires
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dV1�x� + �o�x�dx = 0
�17�

dV2�x� − �o�x�dx = 0

Differentiating Eq. �16� and using Eq. �17�, the following is de-
rived:

d2M1�x�
dx2 + �o�x�dx −

t1

2

d�o�x�
dx

= 0

�18�
d2M2�x�

dx2 − �o�x�dx −
t2

2

d�o�x�
dx

= 0

The moment and curvature radius have the following relation:

Mi�x� =
Di

�i�x�
= − Di

d2vi�x�
dx2 �19�

Here �i �i=1,2� is the radius of curvature and 1 /�i�x�
=−d2vi�x� /dx2, the minus sign is due to the coordinate system as
shown in Fig. 1�a� �8,24,36�. It should be kept in mind that in
general d2v1�x� /dx2�d2v2�x� /dx2 for the composite with interfa-
cial slip. Di �i=1,2� is the bending stiffness per unit width of
layer i defined as Di=Eiti

3 /12. Substituting Eq. �19� into Eq. �18�,
the following is derived:

− D1
d4v1�x�

dx4 + �o�x� −
t1

2

d�o�x�
dx

= 0

�20�

− D2
d4v2�x�

dx4 − �o�x� −
t2

2

d�o�x�
dx

= 0

Differentiating Eq. �14� four times and using the expressions of
d4v1 /dx4 and d4v2 /dx4 derived from Eq. �20�, the following is
obtained:

d4�o�x�
dx4 +

Eob

�
�o�x� =

Eoa

�

d�o�x�
dx

�21�

a and b are defined as follows:

a =
1

2
� t1

D1
−

t2

D2
�

�22�

b =
1

D1
+

1

D2

The longitudinal strains of the two layers in the S-L model have
the following expressions:

du1�x,z�
dx

= � f +
P�x�
E1t1

− z
d2v1�x�

dx2 −
t1

2
� z �

t1

2
�23�

du2�x,z�
dx

= �s −
P�x�
E2t2

− z
d2v2�x�

dx2 −
t2

2
� z �

t2

2

P�x� is also an unknown constraint axial force. At the interface,
the longitudinal strains are as follows:

du1�x,
t1

2
�

dx
= � f +

P�x�
E1t1

−
t1

2

d2v1�x�
dx2

�24�

du2�x,−
t2

2
�

dx
= �s −

P�x�
E2t2

+
t2

2

d2v2�x�
dx2

Differentiating Eq. �15�, gives

d�o�x�
dx

=
Go

�
	du1�x,

t1

2
�

dx
−

du2�x,−
t2

2
�

dx

 �25�

Substituting Eq. �24� into Eq. �25�, gives

d�o�x�
dx

=
Go

�
�� t1

2

12D1
+

t2
2

12D2
�P�x� −

t1

2

d2v1�x�
dx2 −

t2

2

d2v2�x�
dx2 − 	�

�26�

Here 	=�s−� f. Differentiating Eq. �26� twice and using both Eq.
�20� and the fact of dP�x� /dx=�o�x�, gives

d3�o�x�
dx3 −

Goc

�

d�o�x�
dx

= −
Goa

�
�o�x� �27�

and c= �t1
2 /D1+ t2

2 /D2� /3. Differentiating Eq. �21� twice and using
Eqs. �21� and �27� again, leads to

d6�o�x�
dx6 −

Goc

�

d4�o�x�
dx4 +

Eob

�

d2�o�x�
dx2 −

EoGo�bc − a2�
�2 �o�x� = 0

�28�

Equation �28� is the uncoupled governing equation of interfacial
normal stress �o�x�. To derive the uncoupled governing equation
of interfacial shear stress �o�x�, Eq. �27� is differentiated four
times and Eqs. �21� and �27� are used again. The seventh order
differential equation is obtained as follows:

d7�o�x�
dx7 −

Goc

�

d5�o�x�
dx5 +

Eob

�

d3�o�x�
dx3 −

GoEo�bc − a2�
�2

d�o�x�
dx

= 0

�29�

Integrate Eq. �29� once with the use of �o�0�=0 because the inter-
facial shear stress is an odd function �3,24�, the following sixth
order differential equation is derived

d6�o�x�
dx6 −

Goc

�

d4�o�x�
dx4 +

Eob

�

d2�o�x�
dx2 −

EoGo�bc − a2�
�2 �o�x� = 0

�30�

It must be emphasized that the two uncoupled Eqs. �28� and �30�
are not independent of each other and they are related to each
other by Eq. �21�.

2.4 Solutions of �o„x…, �o„x…, and Curvatures. �o�x� of Eq.
�28� has the following solution form �3,24�:

�o�x� = A1 cosh�
1x� + A2 sinh�
1x� + A3 cosh�
hx�cos�
vx�

+ A4 sinh�
hx�cos�
vx� + A5 sinh�
hx�sin�
vx�

+ A6 cosh�
hx�sin�
vx� �31�

Here Ais �i=1–6� are the unknown constants to be determined by
the boundary conditions. 
1, 
h, and 
v are the eigenvalues solved
from the characteristic equation of Eq. �28�. The following param-
eters are defined to express the eigenvalues:

�0 =
c

3

Go

�
�1 =

b

3

Eo

�
−

c2

9
�Go

�
�2

�32�

�2 =
1

3
�c3�Go

�
�3

−
27

2
a2Eo

�

Go

�
+ 9bc

Eo

�

Go

�
+

R1

2�6�1/3

R1 is defined as follows:

R1 = �4�3bEo�3 − c2Go
2�2�3 + �2c3Go

3�3 − 27a2EoGo�4

+ 18bcEoGo�4�2�1/2 �33�

y1, yh, and yv are defined as
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y1 = �0 −
�1

�2
+ �2 yh = �0 +

1

2
��1

�2
− �2� yv =

�3

2
��1

�2
+ �2�

�34�

Now 
1, 
h, and 
v are defined as


1 = �y1 
h =� �yh
2 + yv

2

1 + tan2�1

2
tan−1�yh/yv��

�35�


v = 
h tan�1

2
tan−1�yv/yh��

The symmetry condition requires �o�x� to be an even function
�3,24�, therefore Eq. �31� changes as follows:

�o�x� = A1 cosh�
1x� + A3 cosh�
hx�cos�
vx�

+ A5 sinh�
hx�sin�
vx� �36�

The 3 boundary conditions for Eq. �36� are the following �3,24�:

�
−L

L

�o�x�dx = 0
d2�o�L�

dx2 = 0

�37�
d4�o�L�

dx4 −
Eob

�
�o�L� = −

Eoa

�

Go	

�

−L�x�L and 2L is the beam length. Here the boundary condi-
tions are expressed by �o and their physical meaning cannot easily
be told. Physically, the first boundary condition above indicates
that the vertical shear force is zero at the free edge. The second
and third ones involve the fact that both the axial force and bend-
ing moment are zero at the free edges �3,24�. The 3 boundary
conditions of Eq. �37� written in Ais are the following 3 equations:

sinh�
1L�

1

A1 + � 
v


h
2 + 
v

2 cosh�
hL�sin�
vL�

+

h


h
2 + 
v

2 sinh�
hL�cos�
vL��A3

+ � 
h


h
2 + 
v

2 cosh�
hL�sin�
vL�

−

v


h
2 + 
v

2 sinh�
hL�cos�
vL��A5 = 0 �38�


1
2 cosh�
1L�A1 + ��
h

2 − 
v
2�cosh�
hL�cos�
vL�

− 2
h
v sinh�
hL�sin�
vL��A3

+ ��
h
2 − 
v

2�sinh�
hL�sin�
vL�

+ 2
h
v cosh�
hL�cos�
vL��A5 = 0 �39�

��
1
4 +

Eob

�
�cosh�
1L��A1 + ��
h

2 − 
v
2�2 − 4
h

2
v
2

+ �Eob

�
�cosh�
hL�cos�
vL� − 4
h
v�
h

2

− 
v
2�sinh�
hL�sin�
vL��A3 + ��
h

2 − 
v
2�2 − 4
h

2
v
2

+ �Eob

�
�sinh�
hL�sin�
vL� + 4
h
v�
h

2

− 
v
2�cosh�
hL�cos�
vL��A5 = −

Eoa

�

Go	

�
�40�

The 3 boundary conditions above uniquely determine the values

of A1, A2, and A3.
For the solution of interfacial shear stress �o�x� of Eq. �30�, the

solution has the following form:

�o�x� = C1 sinh�
1x� + C2 sinh�
hx�cos�
vx�

+ C3 cosh�
hx�sin�
vx� + C4 cosh�
hx�cos�
vx�

+ C5 sinh�
hx�sin�
vx� + C6 cosh�
1x� �41�

Here Cis �i=1–6� are the unknown constants to be determined by
the boundary conditions. While, in order to keep �o�x� as an odd
function �3,24�, Eq. �41� changes to the following form:

�o�x� = C1 sinh�
1x� + C2 sinh�
hx�cos�
vx�

+ C3 cosh�
hx�sin�
vx� �42�

Ci �i=1–3� are correlated to Ais via Eq. �21�. Cis are expressed in
Ais as

C1 =
1


1

�

Eoa
�
1

4 +
Eob

�
�A1 C2 =

�

Eoa
��1A3 − �2A5�

�43�

C3 =
�

Eoa
��1A5 + �2A3�

with the definition of �1 and �2 as

�1 = 
h� Eob

��
h
2 + 
v

2�
+ 
h

2 − 3
v
2�

�44�

�2 = 
v� Eob

��
h
2 + 
v

2�
+ 
v

2 − 3
h
2�

Once �o�x� and �o�x� are solved, � f can be obtained as follows by
integrating the first equation of Eq. �16�:

� f = −
d2v1�x�

dx2 = −
1

D1
�

−L

x �
−L

x

�o�x�dxdx +
t1

2D1
�

−L

x

�o�x�dx

�45�

During the derivation of Eq. �45�, the facts that M1
=−D1d2v1 /dx2 in Eq. �19� and dV1 /dx=−�o�x� in Eq. �17� are
also used. Similarly, the curvature of the substrate is found by
integrating the second equation of Eq. �16�,

�s = −
d2v2�x�

dx2 =
1

D2
�

−L

x �
−L

x

�o�x�dxdx +
t2

2D2
�

−L

x

�o�x�dx

�46�

Generally, � f ��s in the S-L model in contrast to � f =�s=�T of the
Timoshenko model. A more dramatic case is demonstrated in the
model of a �soft� film-viscous layer-rigid substrate �37,38� that the
soft film is buckled with relatively large wave number and the
rigid substrate remains flat. Also, the above curvatures of the film
and substrate in the S-L model vary along the beam span in con-
trast to the constants of the Timoshenko model. Huang and Ro-
sakis also summarize six assumptions for the applicability of the
Stoney formula and their sixth is that “all surviving stress and
curvature components are spatially constant over the plate sys-
tem’s surface, a situation which is often violated in practice” �14�.
Clearly, here the interfacial slip is one of the mechanisms respon-
sible for such violation. With the solution of �o�x� and P�x�
=
−L

x �odx �24�, the strain/stress inside the film and substrate can
also be evaluated via Eq. �23�.

3 Results and Discussion
Here the film is germanium with Y1=105.08 GPa, �1=0.26, and

af =0.56574 nm; the substrate is silicon with Y2=150 GPa, �2
=0.17, and as=0.54306 nm �7�. �m�−4%. The interface layer is
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assumed isotropic, so Go=Eo /2�1+�o� �24�. �o is the Poisson’s
ratio of the interface layer and �o=0.2 is assumed. The range of
Go /� taken in Murray and Noyan’s paper is around

1017–1021 Pa /m �24�. Here the relatively compliant interface
layer parameters are taken in order to better demonstrate the effect
of interfacial slip. Two cases of Eo /�=2
1016 Pa /m and 2

1017 Pa /m are studied comparatively. As noticed by Huang and
Zhang �15�, the experimentally measured radii of curvature are
those of the surfaces, which are indicated by Rf

surf and Rs
surf in Fig.

2�a�. The beam model of both the Timoshenko and S-L model
actually describes the behavior of the midplanes of the two layers.
The radii of curvature given by the two models are thus Rf and Rs

as shown in Fig. 2�a�. Rf =Rf
surf+ t1 /2 and Rs=Rs

surf− t2 /2. As dem-
onstrated later in this section, Rf and Rs have the order of
102–103 �m, the thickness �t1 and t2� is just 1–3 �m. So the
curvature difference between the model and experimental mea-
surement is so little to be ignored. As mentioned above, two sets
of coordinate system are used in both the Timoshenko and S-L
models during the derivation. It may cause confusion when exam-
ining the strain across the thickness as shown later in Fig. 5. So
here a new coordinate system located at the interface as shown in
Fig. 2�b� is introduced for the result presentation purpose.

The curvatures of the film and substrate of the S-L model when
Eo /�=2
1016 Pa /m and 2
1017 Pa /m are calculated from Eqs.
�45� and �46�. The curvatures of the Timoshenko model for the
film and substrate are the same. As indicated in Eq. �13�, the
curvature of the Timoshenko model is a constant when the dimen-
sions are fixed. In Fig. 3, the following dimensions are used: t1
= t2=2 �m and L=10 �m. The uniform curvature of the Timosh-
enko model is calculated as �T=14914.1 m−1. For the ideal inter-
face case described by the Timoshenko model, the curvature can
only be uniform without the presence of residual axial stress �16�.
During the derivation above, the implicit assumption of no re-
sidual stress is applied. For the composite with ideal interface and
no residual axial stress, its curvature is proved to be independent
on the length �16�. As indicated in Eq. �13�, �T of the Timoshenko
model is independent of the beam length 2L. However, the two
curvatures of the S-L model in Eqs. �45� and �46� explicitly

Fig. 2 „a… The definitions of different radii of curvature. Rf and
Rs are the radii of curvature of the mid-planes of film and sub-
strate, respectively. Rf

surf and Rs
surf are the radii of curvature of

the surfaces of film and substrate, respectively. „b… The coordi-
nate system for viewing the strain along the thickness.

Fig. 3 The curvatures of film and substrate of the S-L model divided by �T. Eo /� is taken
as 2Ã1016 Pa/m and 2Ã1017 Pa/m, respectively. The thickness of film layer is t1=2 �m
and the thickness of the substrate layer is t2=2 �m; L=10 �m and �T=14914.1 m−1.
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depend on the length. During the derivation of the Timoshenko
model, no boundary conditions are used. For the composite with
ideal interface and no residual axial stress, its curvature is also
proved to be independent on the boundary conditions �16�. The
free-free boundary conditions in Eq. �37� are used for the solution
of the interfacial stresses, therefore, the curvature of the S-L

model is dependent on the boundary conditions. In Fig. 3, � f and
�s are divided by �T for comparison reason. As shown in Fig. 3,
there is little difference between � f and �s for both Eo /�=2

1016 Pa /m and 2
1017 Pa /m. The � f and �s of Eo /�=2

1017 Pa /m are larger than those of 2
1016 Pa /m, respectively.

Fig. 4 The constraint forces per unit width of the S-L model with different Eo /�s divided
by that of the Timoshenko model „Ptimo=1268.1 N m−1

…. t1=2 �m, t2=2 �m, and L
=10 �m.

Fig. 5 The comparison of strains calculated by the Timoshenko model and S-L model
with different Eo /�s. t1=2 �m, t2=2 �m, and L=10 �m. The coordinate system is given
in Fig. 2„b….
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The interface layer is less compliant with larger Eo /�. When Eo /�
approaches infinity, it is the rigid interface of the Timoshenko
model, which allows no interfacial slip. It is also noticed in Fig. 3
that the curvatures of the S-L model are nonuniform. Figure 4
examines how the interfacial slip can alter the constraint axial

force. The dimensions in Fig. 4 are the same as those in Fig. 3. In
the Timoshenko model, the constraint axial force per unit width in
Eq. �12� is solved from the constraint condition of no interfacial
slip as indicated in Eq. �11�. The constraint force per unit width
calculated from Eq. �12� is Ptimo=1268.1 N m−1. The constraint

Fig. 6 The curvatures of film and substrate of the S-L model divided by �T. Eo /� is taken
as 2Ã1016 Pa/m and 2Ã1017 Pa/m, respectively. t1=1 �m, t2=3 �m, L=10 �m, and �T
=9942 m−1.

Fig. 7 The constraint forces per unit width of the S-L model with different Eo /�s divided
by that of the Timoshenko model „Ptimo=1721 N m−1

…. t1=1 �m, t2=3 �m, and L=10 �m.
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axial force per unit width of the S-L model is P�x�=
−L
x �odx �24�.

In Fig. 4, P�x� calculated for both Eo /�=2
1016 Pa /m and 2

1017 Pa /m is again divided by Ptimo for comparison. Clearly,
with the interfacial slip, the constraint force is smaller than that of
the ideal interface case. It is also noticed that the constraint force
of the S-L model varies with x and Eo /��Go /�� with the fixed
layers dimensions, while that of the Timoshenko model is a con-
stant. Figure 5 shows the axial strains of the Timoshenko model
and S-L model. The axial strain of the Timoshenko model is cal-
culated from Eq. �8� and the S-L one is from Eq. �23�. In Fig. 5,
the strain of the Timoshenko model is continuous across the in-
terface, which is also indicated by Eq. �11�. The coordinate system
in Fig. 5 as mentioned at the beginning of this section is the one
shown in Fig. 2�b�. The strains of the S-L models are discontinu-
ous at the interface reflecting the fact of interfacial slip. The strain
of Eo /�=2
1017 Pa /m is less “discontinuous” than that of
Eo /�=2
1016 Pa /m. Eo /� as a fitting parameter physically in-
dicates the effect of interfacial slip as reflected in Eq. �14�. Larger
Eo /� means smaller interfacial slip and for ideal interface Eo /�
=�. As both the theoretical analysis and experiments show that
the layers dimensions also have significant influence on the inter-
facial stresses ��o and �o� as those interfacial parameters �i.e., Eo,
Go, and �� �23,24�, so the thickness of both the film and substrate
is changed in Figs. 6 and 7 to show the effect of layer dimensions.
In Figs. 6 and 7, t1=1 �m, t2=3 �m, and L=10 �m. For these
dimensions, �T=9942 m−1 and Ptimo=1721 N m−1. The curva-
tures and constraint forces are also divided by these new �T and
Ptimo, respectively. In Fig. 6, the curvature difference between the
film and substrate becomes significant around the free edges. The
film curvatures of both Eo /�=2
1016 Pa /m and 2
1017 Pa /m
in Figs. 6 experience much more dramatic variation around the
free edges. The difference between � f and �s in both Figs. 3 and 6
is very little around the center. Compared with those in Fig. 4, the
profiles of the film and substrate constraint forces in Fig. 7 do not
have a dramatic change, just the gap �difference� around the bi-
layer center is smaller.

4 Concluding Remarks
The interfacial slip of non-ideal interface can significantly re-

duce the constraint force as compared with that of ideal interface.
The curvature of the nonideal interface also varies with the struc-
ture length and differs from that of the ideal interface. Therefore,
the evaluation of stress state inside the structure based on the
measured curvature and the model of ideal interface can result in
a serious error without properly evaluating the interface state.
Eo /� and Go /� are the fitting parameters in the S-L model to be
varied to fit the experimental data. Once, the proper Eo /� and
Go /� are chosen, Eqs. �45� and �46� extend the Stoney’s formula
to the application of the composite with interfacial slip.
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Temperature Rise in Polymeric
Materials During High Rate
Deformation
Many polymeric materials undergo substantial plastic strain prior to failure. Much of this
post yield deformation is dissipative and, at high strain rates, will result in a substantial
temperature rise in the material. In this paper, an infrared (IR) detector system is con-
structed to measure the rise in temperature of a polymer during high strain rate com-
pression testing. Temperature measurements were made using a high-speed mercury-
cadmium-telluride (HgCdTe) single-element photovoltaic detector sensitive in the mid-
infrared spectrum (6–12 �m), while mechanical deformation was accomplished in a
split Hopkinson pressure bar (SHPB). Two representative polymers, an amorphous ther-
moplastic (polycarbonate (PC)) and a thermoset epoxy (EPON 862/W), were tested in
uniaxial compression at strain rates greater than 1000 s−1 while simultaneously measur-
ing the specimen temperature as a function of strain. For comparison purposes, analo-
gous measurements were conducted on these materials tested at a strain rate of 0.5 s−1

on another test system. The data are further reduced to energy quantities revealing the
dissipative versus storage character of the post yield work of deformation. The fraction of
post yield work that is dissipative was found to be a strong function of strain for both
polymers. Furthermore, a greater percentage of work is found to be dissipative at high
rates of strain (�1000 s−1) than at the lower rate of strain (0.5 s−1) for both polymers;
this is consistent with the need to overcome an additional energy barrier to yield at strain
rates greater than 100 s−1 in these two polymers. The highly cross-linked thermoset
polymer was found to store a greater percentage of the post yield work of deformation
than the physically entangled thermoplastic. �DOI: 10.1115/1.2745388�

Keywords: split-Hopkinson, infrared, polymer, polycarbonate, epoxy, adiabatic

1 Introduction
2Polymers are increasingly used as integral component materi-

als in products specifically designed to withstand high rates of
loading. Applications span both commercial and military interests,
ranging from protective shields for personnel and sensitive equip-
ment, to windows and windshields for vehicles, or canopies for
aircrafts and helicopters, see, e.g., �1�. During such loading
events, many polymers are able to undergo substantial magnitudes
of plastic strain prior to failure. Much of the post yield deforma-
tion is dissipative and, at high rates, will result in a significant
temperature rise in the polymer. Depending on the temperature
sensitivity of the mechanical behavior of the particular polymer,
the temperature increase can result in substantive thermal soften-
ing of the polymer. While the post yield work in most metals is, to
a large extent, dissipative in nature �e.g., �2��, a more complex
situation exists for the case of polymeric materials. The mecha-
nisms of yield and post yield deformation in polymers allow for
significant energy storage to occur in addition to the dissipation
�see, for instance �3–7��. The exact nature and evolution of the
storage mechanisms are still subjects of investigation. Mechanical
testing at very high rates of deformation provides adiabatic con-
ditions and measurement of the temperature rise during high rate
deformation provides data on the dissipative portion of the post
yield work of deformation as a function of strain. Several inves-
tigators have made measurements of the temperature rise in a

polymer during high rate compression testing in a SHPB using
either thermocouples �e.g., �8,9�� or infrared measurement sys-
tems �e.g., �10–13��. However, the reported data are neither com-
prehensive nor consistent as evident in comparisons of measure-
ments on the temperature rise in PC reported by different
investigators. PC exhibits little variation in stress-strain behavior
from one manufacturer to another, yet there is variability in the
reported temperature measurement data; for example, Fig. 1 de-
picts data from three investigators where the Rittel �9� measure-
ment used thermocouples, the Li and Lambros �12� and the Lerch
et al. �13� measurements used IR systems. In this paper, we report
on an IR-based experimental setup and procedure for measuring
the temperature rise in polymeric samples during high rate defor-
mation within a SHPB; the system builds directly on the previous
work of other investigators in this area and adds refinements. The
system is then utilized to measure the temperature rise in PC and
in an epoxy �EPON 862/W� at strain rates greater than 1000 s−1 to
true strains greater than 0.50; the data are then further reduced to
energy quantities to understand the dissipative versus storage
character of the post yield work of deformation.

2 Experimental Setup
The experimental apparatus used here consists of two parts: a

split Hopkinson pressure bar �SHPB� for measuring the large de-
formation stress-strain behavior in uniaxial compression at strain
rates of approximately 1000 s−1, and an IR detector system for
measuring surface temperature rise during deformation. A sche-
matic of the experimental setup is shown in Fig. 2.

2.1 Split-Hopkinson Pressure Bar Setup. Uniaxial compres-
sion tests were performed on a SHPB test apparatus designed in
cooperation with and built by Physics Applications, Inc., of Day-
ton, Ohio. The theory of SHPB testing has been well documented

1Corresponding author.
2Note that the dissipative versus stored aspects of work are also a topic of ongoing

investigation even in the case of metals.
Contributed by the Applied Mechanics Division of ASME for publication in the

JOURNAL OF APPLIED MECHANICS. Manuscript received September 18, 2006; final
manuscript received February 16, 2007; published online January 11, 2008. Review
conducted by Thomas W. Shield.

Journal of Applied Mechanics JANUARY 2008, Vol. 75 / 011009-1Copyright © 2008 by ASME

Downloaded 04 May 2010 to 171.66.16.43. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



�e.g., �14,15�, and more recently �16��. In addition, issues unique
to testing low-impedance, low yield strength materials are sum-
marized in Chen et al. �17� and Gray and Blumenthal �18�. The
particular apparatus used in this study consists of 19.0 mm diam-
eter aluminum bars and is described in Mulliken and Boyce �19�.
The polymer specimen dimensions were 6.0 mm in diameter and
3.4 mm in height. This geometry was chosen in an effort to keep
the specimen height-to-diameter ratio close to 1:2,3 and also to
maximize the amount of radiation collected by the IR system. The
specimens were lubricated and initially held in place by a small
amount of petroleum jelly on the top and bottom surfaces; a high
speed Cordin camera was used to verify the homogeneity of de-
formation during trial tests.

2.2 Infrared Imaging System Setup. As discussed in the In-
troduction, the temperature rise in polymers during SHPB com-
pression testing has been measured by various researchers using
thermocouples and IR detector techniques. Because of an order of
magnitude difference in the SHPB test duration ��100 to
�300 �s� and thermocouple response time �5–10 ms �20��, a
high speed IR detector approach was preferred and adopted in this
study.

2.2.1 Infrared Detector Assembly. Real time transient tem-
perature measurements were performed using a high speed �re-
sponse time �1 �s� IR radiation detector assembly. The assembly
consists of a photovoltaic detector, preamplifier, dc power supply,
and an oscilloscope. The photovoltaic detector consists of a single
250 �m�250 �m HgCdTe element �Fermionics Corp., Simi Val-
ley, CA� which is optimized for sensitivity in the mid-infrared
spectrum �6–12 �m�, corresponding to the range expected in our
experiments. The detector is mounted behind a sapphire window
and cooled to 77 K by filling the adjoining dewar with liquid
nitrogen, which serves to minimize the electrical and thermal
noise and maximizes the sensitivity of the detector. The signal
from the photovoltaic element is further amplified through a dedi-
cated low-noise, high-stability, rf dc-coupled preamplifier �Perry
Amplifier, Brookline, MA�, optimized in both gain and frequency
input/output for the characteristics of the IR detector supplied.
The preamplifier is powered by an Instek GPS-2303 multi-output
regulated low-noise dc power supply. The power supply is config-
ured to provide the necessary constant ±12 V inputs to the pre-
amplifier, while also preventing overload at excessive levels of
current ��140 mA�. Finally, the amplified signal is read into a
Lecroy Waverunner® digital oscilloscope via high-impedance
�1 M�� coupling.

2.2.2 Imaging System. The imaging system used in the present
study is a slight modification of that used by Zehnder and Rosakis
�21�, Hodowany et al. �22�, and Li and Lambros �12�. In our
system, the detector is stationary; a concave spherical mirror and
a flat mirror focus the specimen radiation onto the detector, as
shown in Fig. 2. The spherical mirror diameter and focal length
are both 152 mm; the flat mirror has a diameter of 51 mm. Both
mirrors are gold coated to enhance reflectivity ��97% � of the
mid-infrared spectrum. The spherical mirror was placed 305 mm
�radius of curvature� from the specimen surface; the flat mirror
was placed at a distance of 178 mm from the spherical mirror. The
detector was positioned 127 mm away from the flat mirror. The
305 mm gap was chosen to provide a 1:1 magnification of the
image focused on the detector element.

The spherical mirror, the flat mirror, and the IR detector are
mounted on stages which are adjustable in three mutually-
perpendicular directions. In addition to translational degrees of
freedom, both mirrors have rotational degrees of freedom about
the horizontal and the vertical axes, parallel and perpendicular to
the optical table, respectively.

2.2.3 Measurement and Data Reduction Issues

2.2.3.1 Radiation cone. The radiant flux E12 intercepted by the
spherical mirror per unit area is given by E12=�F12�T4, where �,
T, F12, and � are the emissivity, absolute temperature, shape fac-
tor, and Stephan-Boltzmann constant �=5.67�10−12 W /cm K4�,
respectively. In order for E12 to be a function of temperature only,
� and F12 must be constants.

The emissivity is known to vary with the surface deformation
and temperature of the specimen. Previous research on polycar-
bonate suggests that the effect of deformation on emissivity in this
case is small �13,23�, and the effect of T on � is taken into account
by calibration of the IR detector output prior to SHPB tests �e.g.,
�12,20��. To further suppress any changes and/or dependencies of
�, a thin layer of soot or black paint is often applied to the sample
surface in order to provide an � of �1 �e.g., �7,10,20��. However,
unexpectedly, in this study, the use of black paint was found to be
detrimental and actually degraded the temperature measurement
as deformation progressed �see Appendix A�; therefore, calibra-
tion and testing were conducted on uncoated specimens.

Next, the shape factor, F12, must be determined. The shape
factor is the fraction of radiation emitted from an area of the
surface that gets intercepted by the mirror �and, in turn, reflected
to the detector element�. F12 depends on the geometry of the
specimen, the SHPB apparatus, the mirror dimensions and the
positioning of the mirror with respect to the specimen, as de-
scribed in Appendix A. Depending on the particular test configu-
ration and the strains imparted to the specimen, the cone of radia-
tion picked up by the mirror can change with specimen
deformation giving a shape factor that depends on strain. For our
system, we have found this effect to be significant with F12 vary-
ing from approximately 0.06 at zero strain to 0.03 at an engineer-

3This particular aspect ratio helps to minimize wave attenuation in the wave
signals while also negating the effects of radial and longitudinal inertia; see, for
instance �17�.

Fig. 2 Schematic of the IR calibration and test setup along
with the SHPB apparatus „left…. Schematics show alignment/
focus procedures „right…. I and II are vertical and rotational
alignments with laser, respectively; III shows focusing with fi-
beroptic light.

Fig. 1 Data on the temperature rise in polycarbonate during
split Hopkinson bar compression as reported in the literature
†9,12,13‡
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ing strain of 0.5 �see Appendix A�. To overcome the issues related
to a dependence of F12 on strain, the spherical mirror is partially
blocked using a nonreflective tape ���0.95�, during the calibra-
tion and the tests. This ensured that the effective area of the mirror
collecting the radiation would be the same �shape factor �0.03�
during the calibration and over the entire duration of the test.

In addition, the transmission bar also displaces slightly during a
test and, therefore, the incident bar blocks the focused point on the
specimen surface at the later stages of the deformation; when this
occurs, the effect on the temperature rise measurement is dra-
matic. However, providing an initial offset to the bar ensures that
the IR detector is always focused on the specimen for the entire
duration of the test and minimizes the effect. The optimal offset
amount was found to be approximately one-half of the initial
specimen height.

Other important factors that contribute to accurate temperature
measurements using the IR system are the alignment/focusing of
the imaging system and the calibration of the IR system. A similar
approach as that used by others �e.g., �10,20,24,25�� was followed,
performing alignment using visible light followed by calibration
of the relationship between the IR measurement and the specimen
temperature. The setup is detailed next.

2.2.3.2 Alignment and focus. For every test, the imaging sys-
tem must be properly aligned and focused. Due to the very small
element area �250 �m�250 �m�, even slight misalignment or
lack of focus causes the detector signal to severely diminish in
magnitude. Though the entire optical setup is mounted on a vibra-
tion free optical table, the alignment and focusing steps must be
repeated if a significant time has elapsed between tests and when-
ever a new material is examined.

Coarse alignment of the imaging system is accomplished with a
HeNe diode laser that generates a focusable single line �Edmund
Optics� when no specimen is in place. The laser is mounted be-
hind the specimen location, located and aimed such that the beam
passes through the center of the split Hopkinson bars. By adjust-
ing the vertical degrees of freedom of the spherical mirror, flat
mirror, and the IR detector, the laser beam is directed onto the
center of the sapphire window located on the detector. This en-
sures that the system is properly aligned in the horizontal plane
�see Fig. 2-I�. Also, to ensure a 1:1 correspondence between the
spot size on the specimen and the detector area, the locations of
the components in the horizontal plane are adjusted such that the
total optical path is approximately 610 mm.

For fine alignment, following �20�, a mock specimen of black
Teflon with a hole through the center �lateral surface� is placed
between the incident and the transmission bars such that the
through hole is aligned with the path of the laser beam in the
horizontal plane. The beam exiting the specimen hole is adjusted
to fall on the center of the spherical mirror, flat mirror, and finally
on the IR detector by moving the bars �with the mock specimen in
place� horizontally, or by fine adjustment of the translational de-
grees of freedom of the mirrors and the detector in the horizontal
plane, see Fig. 2-II.

Finally, the alignment laser is replaced with a fiber optic light
fitted with a focusing lens �10�. This light emits a conical beam
�see Fig. 2-III�, creating a silhouette image of the mock specimen
on the outer face of the sapphire window. The sharpness of the
image of the center hole is adjusted by moving the detector either
forward or backward in the line of the projected image. Once the
image of the center hole in the mock specimen is optimally fo-
cused on the face of the sapphire window, the housing is moved
forward a known amount corresponding to the distance that the
actual photovoltaic element is set back inside. Next, since the
detector element can be seen behind the sapphire window with the
help of the fiberoptic light, the laser beam through the hole is
directed onto the center of the element by adjusting the horizontal
tilt angles of the flat mirror. This ensures a complete fine align-
ment and focusing of a point on the specimen surface onto the

detector element. A scriber is used to mark the center location of
the specimen, initially aligned with the hole in the mock sample.

2.2.3.3 Calibration. For each set of tests on a material, cali-
bration is required to relate the voltage change signal output from
the IR detector assembly to the temperature change in the speci-
men. A schematic of the experimental setup configured for the
calibration test is shown in Fig. 2. For calibration, another mock
specimen is necessary, this time of identical material and geom-
etry as the actual specimen to be tested. Here a K-type bare-wire
thermocouple �Omega Engineering; CHAL-005� is embedded in
the mock specimen on its lateral surface �0.5 mm deep. The
thermocouple is glued with a highly conductive room temperature
epoxy �Omega Engineering�. The mock specimen with embedded
thermocouple is placed on a hot plate and heated below or close to
Tg of the material so as not to deform the specimen. The tempera-
ture is monitored using an Omega RD8800 recorder which has a
built-in cold-junction reference. Once at temperature near the Tg,
the heated specimen is removed from the hot plate and quickly
sandwiched between the SHPB at the aligned/focused position. As
the specimen cools,4 both the thermocouple temperature signal
and the IR detector assembly signal �voltage� are recorded con-
currently. Once the specimen reaches room temperature, the two
data acquisition systems are stopped simultaneously. This calibra-
tion procedure is repeated 3–5 times. In the analysis of the cali-
bration data, the IR signal and thermocouple temperature are
aligned from their end points and plotted backwards, yielding a
temperature rise versus voltage change curve. In the unlikely
event of scattering among the various calibration curves, the curve
which indicates the greatest voltage output by the detector for a
given temperature rise is taken to be the most accurate. Calibra-
tion curves indicating an inferior voltage output for the same tem-
perature rise correspond to imperfect placement of the calibration
sample at the aligned/focused position.

3 Results and Discussion
The materials used in this study are Lexan® polycarbonate �a

glassy thermoplastic; manufactured by GE plastics� and
diglycidylbisphenol-F epoxy with curing agent W, type EPON
862/W �a thermoset; supplied by Wright Patterson Air Force Re-
search Laboratory�. Results are reported in terms of true stress
versus true strain curves5 and change in temperature versus true
strain curves on tests conducted at strain rates of over 1000 s−1.
These data are further reduced to a set of post yield work Wpy,
stored energy Upy, and dissipated energy Qpy curves �all as a
function of true strain�. For comparison purposes, corresponding
results are also presented for compression tests conducted on a
servo-hydraulic Instron machine at a strain rate of 0.5 s−1 using
the system and protocol similar to that reported in Arruda et al. �7�
and briefly detailed in Appendix B for completeness.

3.1 Polycarbonate. Uniaxial compression true stress-true
strain and temperature rise-true strain curves for PC at true strain
rates of 3400 s−1 and 0.5 s−1 are shown in Fig. 3�a�. For the high
rate tests, three temperature curves are depicted to demonstrate the
repeatability and reliability of the IR test system and protocol.

The true stress-strain results exhibit the characteristic features
of polymer mechanical behavior including a rate-dependent yield

4Based on the finite element simulation and experimentation results of Macdou-
gall �20� and Bjerke et al. �25�, respectively, we assumed that heat is conducted
through the highly conductive epoxy from the specimen to the thermocouple in an
extremely short duration.

5For the high rate stress-strain data, dynamic equilibrium is reached just prior to
the yield point; hence, the stress-strain curves are only valid after that point.
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stress,6 post-yield strain softening7 up to moderate strains, fol-
lowed by post-yield strain hardening. The corresponding tempera-
ture rise-strain curves exhibit a monotonic, nonlinear increase in
temperature with increase in strain. At a strain of 0.60, the rise in
temperature for the 3400 s−1 case is 39°C compared with a rise of
20°C for the 0.5 s−1 case. The higher temperature rise at 3400 s−1

is a reflection of the greater dissipation during deformation at the
higher rate due to the dramatically higher yield stress �118 MPa�
at 3400 s−1 compared to the yield stress �75 MPa� at 0.5 s−1 �note
that the 0.5 s−1 conditions are nearly fully adiabatic�. These data
compare reasonably well with the Lerch et al. �13� data up to a
strain of 0.65; note that the Lerch et al. �13� temperature results lie
a little below those obtained here, but had been obtained at a
slightly lower strain rate �1800 s−1�. We speculate that the plateau-
ing of the temperature rise curve in the Lerch et al. �13� data �refer
back to Fig. 1� after a strain of 0.70 is possibly due to either a
reduction in the cone of radiation reflected at the larger strains
and/or a calibration issue at the higher temperatures.

In order to better explore and understand the dissipative versus
stored energy character of the post yield work of deformation, the
stress-strain data and the temperature rise data are further reduced
in two ways. First, the post yield work, Wpy, as a function of strain
is calculated �by integrating the stress-strain curve� and plotted in

Fig. 3�c�; Wpy is then used to give an upper bound to the post yield
temperature rise8 as a function of strain in Fig. 3�b� where it is
plotted together with the temperature data. Second, the measured
temperature rise, �T, is used to calculate the dissipated energy via
Qpy=�cp�T as a function of strain and plotted in Fig. 3�c�; the
post yield stored energy Upy is then estimated by subtracting Qpy
from Wpy and also plotted in Fig. 3�c�. For compression at a strain
rate of 3400 s−1, the stored energy curve reveals a significant level
of energy storage after yield up to strains of 0.25; the energy
storage then plateaus with a small monotonic increase beginning
again at a strain of 0.45 �coinciding with the onset of significant
strain hardening�. Overall at this strain rate of 3400 s−1, the post
yield energy storage is quite small compared to the overall work
of deformation as evidenced by the dissipation curve lying just
beneath the work of deformation curve. To further identify the
storage versus dissipative character of the work of deformation as
a function of strain, we plot the ratio of the increment in dissipa-
tion over the increment in work, �Qpy /�Wpy �calculated over
strain increments of 0.01� as a function of strain in Fig. 3�d�. This
clearly shows the significant storage character of post yield work
up to a strain of 0.30, transitioning to nearly completely dissipa-
tive, then transitioning to exhibit additional storage at the highest
strains.

For the case of deformation at a strain rate of 0.50 s−1, the
storage versus dissipative character of the work of deformation
has a similar character as that observed at 3400 s−1. However, a

6For experiments on the rate dependence of yield over a wide range in strain rate
for PC, see for example �19,26,28–30�; �19,28,30� also present modeling of this rate
dependence.

7We note that both the PC and the epoxy studied in this paper exhibit material
strain softening under isothermal conditions �as observed in isothermal low rate
compression tests which are not shown in this paper�; the softening in the stress-
strain curves in this paper contain contributions from both strain softening and from
thermal softening.

8The upper bound to the temperature rise is computed via �T=Wpy�� .cp�, where
� is the material density and cp is the specific heat at 25°C; PC: �=1200 kg m−3,
cp=1250 J kg−1 K−1; Epon 862/W: �=1005 kg m−3, cp=1500 J kg−1 K−1.

Fig. 3 „a… PC true-stress true-strain behavior and corresponding temperature rise under
uniaxial compression at a true strain rate of 0.5 s−1 and 3400 s−1. „b… Post-yield temperature
rise as a function of true strain comparing experiment to an upper bound calculation which
assumes 100% of the post-yield work to be dissipated for both the 0.5 s−1 and 3400 s−1 tests.
„c… Post-yield work of deformation, dissipated energy „as computed based on the measured
temperature rise… and stored energy; all as a function of true strain. „d… The fraction of incre-
mental work dissipated „calculated over true strain increments of 0.01… as a function of true
strain.
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significantly greater magnitude of energy is stored at 0.5 s−1 than
at 3400 s−1; this larger magnitude of energy storage combined
with the smaller overall magnitude in work leads to a far greater
percentage of work being stored during deformation at the 0.5 s−1

rate than the 3400 s−1 rate. The 0.50 s−1 data on energy storage
versus dissipation are consistent with the deformation calorimetry
data of Rudnev et al. �27� and Salamatina et al. �3�. These results
regarding the different level of stored versus dissipated energy at
the 3400 s−1 as compared to the 0.50 s−1 rates of deformation are
also consistent with the transition in rate dependence of room
temperature yield of PC as one transitions from strain rates less
than 10 s−1 to rates greater than 100 s−1, as discussed in Mulliken
and Boyce �19,28,29� and Mulliken �30�, where at the high rates
an additional barrier to yield is encountered due to the need to
activate local secondary molecular motions �	 motions� in order
to deform at high strain rates. The data of Fig. 3 show that this
additional deformation mechanism encountered at the high strain
rates is dissipative and also hinders the energy storage affiliated
with the primary 
 motions of yield.

3.2 EPON 862/W Epoxy. A thermoset epoxy EPON 862/W
was also tested at high �2500 s−1� and moderate �0.5 s−1� strain
rates. The true stress versus true strain and the temperature rise
versus true strain behaviors are shown in Fig. 4�a�. Figures
4�b�–4�d� show the further reduction of these data into the corre-
sponding upper bound to the temperature rise versus strain curve,
the set of post-yield work curves, and the ratio of �Qpy /�Wpy
versus strain curves. The tests were repeated at least three times at
the same strain rate and the data were found to be consistent. The
compressive stress-strain data exhibit the characteristic features of
polymer stress-strain behavior as described earlier. The overall
stress levels for this epoxy at the 0.50 s−1 and 2500 s−1 rates are
observed to be greater than the corresponding levels in PC. The

temperature rise is found to monotonically increase with strain in
a nonlinear manner for both the 0.5 s−1 and the 2500 s−1 case.
Despite the larger yield and post yield stress levels of the epoxy,
the temperature rise magnitudes at any strain are comparable to
the PC material.

The work related curves for EPON 862/W �Figs. 4�c� and 4�d��
reveal a greater percent of the post yield work of deformation to
be stored in this epoxy when compared to the case of PC. This is
consistent with the greater recovery of deformation upon unload-
ing observed in this epoxy as compared to PC �see Table 1�. We
also note that the energy storage curves of 2500 s−1 and 0.5 s−1

are nearly coincident for this epoxy, suggesting that the energy
storage mechanism in the epoxy is independent of strain rate. As
in the PC material, the dramatic increase in strain rate at 2500 s−1

over that observed at 0.5 s−1 in this epoxy is found to be related to
a need to activate local motions �tertiary � motions for the case of
EPON 862/W� at the high strain rates of deformation in order to
yield the material �31� and are found here to be a dissipative event
as evidenced by the increase in dissipation due to this increase in
yield stress.

Fig. 4 „a… EPON 862/W true-stress true-strain behavior and corresponding temperature rise
during uniaxial compression at a true strain rate of 0.5 s−1 and an average true strain rate of
2500 s−1, respectively. „b… Comparison of temperature rise obtained experimentally and theo-
retically assuming 100% work is dissipated as thermal energy. „c… Post yield work of deforma-
tion, dissipated energy, and stored energy as a function of strain. „d… The fraction of incremen-
tal work dissipated „as calculated over true strain increments of 0.01… as a function of true
strain.

Table 1 Residual true strains after unloading from an imposed
true strain of 0.62 „strain rate=0.5 s−1

… measured at different
time periods after unloading

Material �imposed

�unloaded

�t=0 s�
�unloaded

�t=15 min�
�unloaded

�t=1 h�

PC 0.62 0.49 0.49 0.49
EPON 862/W 0.62 0.40 0.38 0.38
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4 Conclusions
A refined high-speed photovoltaic detector approach has been

developed which is capable of measuring specimen surface tem-
perature during high rate deformation within a split Hopkinson
pressure bar. The IR detector was used to measure surface tem-
perature during homogeneous uniaxial compression at true strain
rates greater than 1000 s−1 in polycarbonate �PC� and EPON
862/W epoxy. The experimental data were validated by checking
for repeatability, by comparing the data with quasistatic compres-
sion tests, and by comparing the data with the theoretical esti-
mates of temperature rise as a function of strain. The data are
further reduced to energy quantities revealing the dissipative ver-
sus storage character of the post yield work of deformation. The
fraction of post yield work that is dissipative was found to be a
strong function of strain for both polymers consistent with earlier
deformation calorimetry data to moderate strains, for example
�3,27�. Furthermore, a greater percentage of work is found to be
dissipative at high rates of strain ��1000 s−1� than at the lower
rate of strain �0.5 s−1� for both polymers; this is consistent with
the need to overcome an additional energy barrier to yield at strain
rates greater than 100 s−1 in these two polymers �19,28,31�. Al-
though the various features of the compressive true stress-strain
behavior in polycarbonate and EPON 862/W are similar, the
highly cross-linked thermoset EPON 862/W was found to store a
greater percentage of the post yield work of deformation than the
physically entangled thermoplastic PC �consistent with the greater
recovery of strain upon unloading observed in the EPON 862/W
compared to that found in the PC�. The measurement of tempera-
ture rise as a function of inelastic strain under adiabatic conditions
provides important information to not only understand thermal
softening issues in polymers, but also dissipative versus storage
aspects of the post yield work of deformation which can guide
constitutive model developments.
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Appendix A: Imaging System Issues

Surface Coating Issues. The use of a black coating to provide
an emissivity of �1.0 during infrared measurement was found to
be unreliable during our very high rate tests. A comparison of

calibrated temperature measurement as a function of axial strain
on three specimens, one without and two with different types of
black paint, are shown in Fig. 5; the cases with black paint, show
a clear degradation in ability to measure the temperature as the
strain increases. Therefore, we chose not to use any coating during
high rate testing and, instead, to calibrate uncoated samples prior
to each set of tests on a given material.

IR Shape Factor. The shape factor, F12, for use in relating the
temperature to the radiation is defined as the fraction of radiation
leaving an elemental surface of area A1 that gets intercepted by
the surface of area A2. An estimate of F12 for the case of two
parallel surfaces of area A1 and A2 �see Fig. 5�a�� separated by a
distance H is given below, where the second surface is a disk of
diameter D, and the elemental surface is small �A1�A2� �32�. In
the case of the imaging system used here, the area A1 is on the
surface of the specimen, and A2 is the projected area of the spheri-
cal mirror, perpendicular to the line connecting A1 and A2 �see
Fig. 6�b��.

Fig. 5 Typical temperature rise curves showing the effect of
black paint for the case of PC at strain rate of 3400 s−1

Fig. 6 Schematic in „a… shows the parameters used in estimat-
ing the shape factor; „b… shows the schematic of the initial
setup before the specimen deforms and the corresponding
cone of view; and „c… shows the setup once the specimen is
subjected to 0.5 engineering strain during the test and the cor-
responding cone of view
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d� = sin �d�d� �A2�

In Eqs. �A1� and �A2�, d� is the differential solid angle subtended
by elemental area dA2 at an elemental area dA1 and �, �, and �
are the azimuthal angle, zenith angle, and the half of the angle
subtended by the projected area A2 at A1, respectively. Substitut-
ing D=152 mm �spherical mirror diameter� and H=305 mm �ra-
dius of curvature of the mirror, or the distance of the mirror from
the sample� in Eq. �A1�, we get F12�0.06. Figure 6�b� shows at
zero strain in the specimen, � varies between 0 and 2
, which
gives F12=0.06, while Fig. 6�c� shows that at 0.5 engineering
strain, � varies between 0 and 
, thus reducing the area of the
mirror utilized to collect radiation by half, which gives F12
=0.03. Clearly, the schematics in Figs. 6�b� and 6�c� show how
F12 varies between 0.03 and 0.06 as �
���2
� while the test is
in progress.

To illustrate this effect further, Figs. 7�a� and 7�b� show the
calibration curve obtained assuming F12�0.06 as compared to
that using F12�0.03 and the effect of these two different calibra-
tion curves on the “measured” temperature rise as a function of
strain. A calibration sample having diameter of 6.0 mm and height
of 3.4 mm corresponded to the shape factor of 0.06 �sample I in
Fig. 7�a��, while another calibration sample having diameter of
6.0 mm and height of 1.7 mm corresponded to the shape factor of
0.03 �sample II in Fig. 7�a��. To overcome the issues related to a
dependence in shape factor on strain, the spherical mirror is par-

tially blocked using a nonreflective tape ���0.95�, during the
calibration and the tests. This ensured that the effective area of the
mirror collecting the radiation would be the same �shape factor
�0.03� during the calibration and over the entire duration of the
test. Figures 7�c� and 7�d� show how the taping of the spherical
mirror results in a shape factor that does not depend on deforma-
tion. Partially blocking the mirror also results in lowering the
amount of radiation collected which is directly proportional to the
current produced by the IR detector; this is evident from voltage
change values in the calibration curves of Figs. 7�a� and 7�c�.

Note that in Fig. 6�c�, the incident bar blocks the focal point on
the specimen beyond 0.5 engineering strain �true strain of 0.69�,
which makes the temperature measurement beyond that point
unreliable.

Appendix B: Brief Description of the Quasi-Static
Mechanical Test and IR System

Quasi-static uniaxial compression tests �0.5 s−1� at ambient
temperature were conducted on an Instron 1350 servo-hydraulic
axial mechanical tester. The Instron actuator displacement was
controlled to provide a constant true strain rate loading condition
via a feedback loop using information from the extensometer to
prescribe the motion of the actuator. The compression platens
were designed to have a truncated conical shape where the conical
feature ensures no blockage of radiation during deformation. Thin
Teflon films were placed between specimen and the compression
platens to achieve global homogeneous deformations. WD-40 lu-
bricant was sprayed between Teflon films and platens to further
enhance the homogeneous deformation. PC and epoxy specimens
were machined as cubes with sides of 10.0 mm and 5.0 mm, re-
spectively. These sample sizes provide nearly adiabatic conditions
at a strain rate of 0.5 s−1. All samples were painted with a black

Fig. 7 Typical calibration curves „left… and corresponding temperature rise versus axial strain
curves „right… showing the effect of shape factor on temperature measurements for epoxy
samples compressed at a strain rate of 2500 s−1 before „a… and after partially „b… blocking the
spherical mirror. Black paint was not applied to specimens „for case „a…: the sample I F12
È0.06; and the sample II F12È0.03….
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acrylic spray paint9 ���0.95� an hour before the tests and were
subjected to a maximum true strain of −0.62. During the test,
true-stress and true-strain quantities were calculated from the load
cell and extensometer output, respectively, while simultaneously
specimen surface temperature was calculated directly by a Mikron
MI-N5-H�Infraducer® with a spectral response range between 8
and 14 �m. This precalibrated infrared detector provides accurate
temperature measurements based upon an input surface emissiv-
ity. The specimen was coated with black paint to maintain a con-
stant emissivity with deformation �the integrity of the black coat-
ing with strain was found to be robust for these low deformation
rates�. The minimum spot size for this detector, achieved by plac-
ing the detector exactly 120 mm from the specimen, is 2.4 mm.
The response time is 10 ms, and the accuracy is 0.6% of the
measured value.
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Solution for a Semi-Permeable
Interface Crack in Elastic
Dielectric/Piezoelectric
Bimaterials
A semi-permeable interface crack in infinite elastic dielectric/piezoelectric bimaterials
under combined electric and mechanical loading is studied by using the Stroh complex
variable theory. Attention is focused on the influence induced from the permittivity of the
medium inside the crack gap on the near-tip singularity and on the energy release rate
(ERR). Thirty five kinds of such bimaterials are considered, which are constructed by five
kinds of elastic dielectrics and seven kinds of piezoelectrics, respectively. Numerical
results for the interface crack tip singularities are calculated. We demonstrate that, what-
ever the dielectric phase is much softer or much harder than the piezoelectric phase, the
structure of the singular field near the semi-permeable interface crack tip in such bima-
terials always consists of the singularity r−1/2 and a pair of oscillatory singularities
r−1/2±i�. Calculated values of the oscillatory index � for the 35 kinds of bimaterials are
presented in tables, which are always within the range between 0.046 and 0.088. Energy
analyses for five kinds of such bimaterials constructed by PZT-4 and the five kinds of
elastic dielectrics are studied in more detail under four different cases: (i) the crack is
electrically conducting, (ii) the crack gap is filled with air/vacuum, (iii) the crack gap is
filled with silicon oil, and (iv) the crack is electrically impermeable. Detailed compari-
sons on the variable tendencies of the crack tip ERR against the applied electric field are
given under some practical electromechanical loading levels. We conclude that the dif-
ferent values of the permittivity have no influence on the crack tip singularity but have
significant influences on the crack tip ERR. We also conclude that the previous investi-
gations under the impermeable crack model are incorrect since the results of the ERR for
the impermeable crack show significant discrepancies from those for the semi-permeable
crack, whereas the previous investigations under the conducting crack model may be
accepted in a tolerant way since the results of the ERR show very small discrepancies
from those for the semi-permeable crack, especially when the crack gap is filled with
silicon oil. In all cases under consideration the curves of the ERR for silicon oil are more
likely tending to those for the conducting crack rather than to those for air or vacuum.
Finally, we conclude that the variable tendencies of the ERR against the applied electric
field have an interesting load-dependent feature when the applied mechanical loading
increases. This feature is due to the nonlinear relation between the normal electric
displacement component and the applied electromechanical loadings from a quadratic
equation. �DOI: 10.1115/1.2745397�

Keywords: interface crack, elastic dielectric, piezoelectric, permittivity, the crack tip
ERR, oscillatory singularity

1 Introduction
Manmade functional materials such as multiplayer piezoelectric

ceramics, piezoelectric composites, and elastic dielectric/
piezoelectric composites with enhanced electromechanical cou-
pling properties have been developed in recent years. They com-
bine strong piezoelectric ceramics with other compliant dielectrics
�e.g., epoxy or polymer�. These smart composites, e.g., PZT/
polymer composites, have become attractive candidates for use in
transducers and actuators for vibration control and and biomedical
imaging applications. On the one hand, a basic theoretical frame-
work for the design of piezocomposites with prescribed overall
properties has been developed �see, e.g., �1–3� among many oth-

ers� and a number of efforts have been carried out for interface
cracks in dissimilar piezoelectric materials �see, e.g., �4–20�
among many others�. However, when an elastic dielectric and a
piezoelectric material are bonded together along their interface, a
high in-layer stress-electric field may produce on the interface due
to the mechanical and electric mismatch properties of the two
different kinds of materials. Interface cracking, sometimes called
delamination or interlaminar cracking, as commonly seen in fiber
reinforced composite laminates, should be considered as one of
the most common failure type in elastic dielectric/piezoelectric
composites. On the other hand, to the present authors’ knowledge,
a few of the analytical solutions for the interface crack problems
in elastic dielectric/piezoelectric bimaterials were presented in the
literature. It is noticed that such bimaterials should have two kinds
of material mismatch properties along interface: the electric mis-
match properties and the mechanical mismatch properties, al-
though both of them should be coupled in the constitutive equa-
tions of piezoelectric materials. For example, their piezoelectric
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phase has strong piezoelectricity and large permittivity �about
1000 times larger than air/vacuum�, whereas their dielectric phase
has a tiny piezoelectricity and much smaller permittivity �only
about 4–10 times larger than air/vacuum�. Moreover, such bima-
terials should also have much stronger mechanical mismatch
properties on interfaces than those for classical two-phase piezo-
electric materials because the dielectric phase may be much softer
�e.g., epoxy or polymer� or much harder �e.g., SiC or Al2O3� than
the piezoelectric phase, whereas the differences in elastic moduli,
piezoelectricity, and permittivity of two dissimilar piezoelectric
materials, say, e.g., PZT-4/PZT-5H, are always relatively small.
Recently, Ou and Chen �21� analyzed the interface crack problem
in elastic dielectric/piezoelectric bimaterials based on the ex-
tended Stroh complex potential theory developed by Suo et al. �5�.
However, their investigation was based on the electrically imper-
meable condition on the interface crack surfaces. As pointed out
by many researchers in studying homogenous piezoelectric mate-
rials with cracks, this condition is physically incorrect and mis-
leading �see, e.g., McMeeking �22–24��, whereas the electric
boundary condition proposed by Parton and Kudryavtsev �25� and
Hao and Shen �26� �called the semi-permeable crack or abbrevi-
ated as the PKHS crack� is more reasonable �see, e.g.,
�22–24,27–29� among many others�. Therefore, the permittivity of
the medium �e.g., air or vacuum, silicon oil, and NaCI solution,
etc.� inside the interface crack gap in such bimaterials should
receive special attention to clarify its influence on the crack tip
singularity and the ERR in turn on the interface crack stability.

This paper has two goals. The first is to obtain an analytical
solution accounting for the permittivity of the medium inside an
interface crack gap in elastic dielectric/piezoelectric bimaterials
and to study the influence of the permittivity on the crack tip
singularity. The second is to provide some rich numerical results
for the influence of different permittivties on the crack tip ERR
under some practical loading levels. For convenience to use the
Stroh theory �Suo et al. �5��, the elastic dielectric material with
some permittivity is treated as a special transversely isotropic pi-
ezoelectric material with a tiny piezoelectricity and the distribu-
tion of the normal electric displacement component �NEDC�
along the crack is assumed to be uniform as Xu and Rajapakse
�29� did in homogeneous piezoelectrics. Thus, the problem can be
deduced to a Hilbert problem. After obtaining the solution for the
semi-permeable interface crack in infinite elastic dielectric/
piezoelectric bimaterials, we present rich numerical results for the
singular analysis at the interface crack tip for 35 types of such
bimaterials constructed by the following five kinds of elastic di-
electric materials: epoxy, polymer, Al2O3, SiC, and Si3N4 and by
the following seven kinds of commercial piezoelectric ceramics:
PZT-4, BaTiO3, PZT-5H, PZT-6B, PZT-7A, P-7, and PZT-PIC
151, respectively. These results show that, unlike those for the
impermeable crack model in dissimilar piezoelectric materials
�17,18� which may either show oscillatory or show nonoscillatory
singularities, the structure of the singular field near the semi-
permeable interface crack tip in the present bimaterials always
consists of the inverse square root singularity r−1/2 and a pair of
oscillatory singularities r−1/2±i�, which are similar to those in dis-
similar elastic anisotropic materials and also similar to those of
Beom and Atluri �15� or Beom �16� for a conducting or permeable
interface crack between dissimilar piezoelectric ceramics. Calcu-
lated values of the oscillatory index � for the 35 kinds of bimate-
rials are presented, which fall to the range between 0.046 and
0.088, whereas most of them are around 0.06 always much larger
than those in 7 kinds of the � class dissimilar piezoelectric mate-
rials reported by Ou �17�. Detailed comparisons and discussions
on the crack tip ERR are performed by considering four different
values of the permittivity of medium inside the interface crack
gap: �i� the crack is electrically conducting �e.g., the gap filled
with NaCI solution as did by Heyer et al. �30��, �ii� the gap filled
with air/vacuum, �iii� the gap filled with silicon oil as did by Park
and Sun �31,32�, and �iv� the crack is electrically impermeable,

which are plotted in the figures. We conclude that the permittivity
does not influence the crack tip singularity but influences the
crack tip ERR significantly and in turn may influence the interface
crack stability in such bimaterials under combined mechanical and
electric loadings. We also conclude that, as McMeeking �22,23�
pointed out in homogeneous piezoelectric materials, the previous
investigations under the impermeable crack model are incorrect
since the results of the ERR for the impermeable crack show
significant discrepancies from those for the semi-permeable crack
model, whereas the previous investigations under the conducting
crack model may be accepted in a tolerant way since the results of
the crack tip ERR show small discrepancies from those for the
semi-permeable crack model, especially when the crack is filled
with silicon oil. It is noticed that softer dielectrics such as epoxy
and polymer �whose elastic moduli are much smaller than piezo-
electric ceramics� yield larger discrepancies, whereas harder di-
electrics such as Al2O3, SiC, and Si3N4 �whose elastic moduli are
much larger than piezoelectric ceramics� yield smaller discrepan-
cies. This reveals that the mechanical mismatch properties are
more important than the electric mismatch properties in the
present interface crack problem. In all figures under consideration
the curves of the ERR for silicon oil are more likely tending to
those for a conducting crack rather than to those for air or
vacuum. Of great interest is that the variable tendencies of the
crack tip ERR against the applied electric field have an interesting
mechanical load-dependent feature. That is, the larger mechanical
loading not only decreases the magnitude of the crack tip ERR,
but also shifts the variable curves of the ERR when the applied
electric field varies from −0.6 MV /m to +0.6 MV /m. As men-
tioned by Xu and Rajapakse �29�, this feature is due to the non-
linear relation induced from a quadratic equation between the
NEDC and the applied loadings. This finding provides a better
understanding of the failure mechanism of the interface crack sta-
bility in elastic dielectric/piezoelectric bimaterials under practical
loading levels.

2 Basic Formulations and Analytical Solutions
Consider an interface crack of length 2a lying along the inter-

face between a elastic dielectric material and a transversely iso-
tropic piezoelectric material under the generalized plane strain
deformation as shown in Fig. 1. Let the remote uniform
mechanical-electrical loading acting on the infinitely large bima-
terial be denoted by �32

� , �33
� , �31

� , and E3
�, respectively. The pi-

ezoelectric phase occupies the upper half space x3�0 with the

Fig. 1 A semi-permeable interface crack in elastic dielectric/
piezoelectric bimaterial under the remote mechanical and elec-
trical loadings
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poling axis being perpendicular to the interface, whereas the iso-
tropic elastic dielectric phase occupies the lower half space x3
�0. It is assumed that the crack is traction-free but filled with
some medium with the permittivity �v so that the crack surfaces
have an unknown normal electric displacement D3

0 �29�.
The present investigation starts from the semi-permeable crack

or the PKHS crack model proposed firstly by Parton and
Kudryavtsev �25� and then studied by Hao and Shen �26� and
well-addressed more recently by McMeeking �22–24�. According
to Fig. 1, the PKHS crack model is formulated by

D3
+ = D3

− D3
0�u3

+ − u3
−� = − �v��+ − �−� �1�

where the superscripts � and � refer to the upper and lower crack
surfaces, respectively; u3 is the displacement component normal
to the crack surface; D3

0 and � is the unknown normal electrical
displacement and the electrical potential along the crack surfaces,
respectively; �v is the permittivity of the medium inside the inter-
face crack gap. The value of �v for air or vacuum is �v=�0
=8.85	10−12 C2 /N m2.

All basic formulations for the extended Stroh’s complex vari-
able theory �5� are presented in the Appendix. In order to give an
analytical solution, we assume that the NEDC along the interface
crack is uniform �29�.

Thus, using Viogt’s notation, we can transform the constitutive
relation of elastic dielectric material into the form of Eq. �A1� by
letting the coefficients of Eq. �A1�

c13 = c12 c33 = c11 c44 = �c11 − c12�/2 �2�
However, the elastic dielectric materials/piezoelectric bimateri-

als are constructed by two different kinds of solids with different
constitutive equations, it is quite difficult to directly use the Stroh
formulations of Suo et al. �5� to combine both kinds of constitu-
tive equations in theoretical analyses. From the physical point of
view, we know that the elastic dielectric material �the lower ma-

terial in Fig. 1� always has a tiny piezoelectricity yielding some
very small values of the mechanical-electric couple coefficients
k33, k31, and k15 reduced from Eq. �A1�. In general, commercial
piezoelectric ceramics have some values of k33, k31, and k15 within
the range between 0.5 and 0.7 in magnitude. Therefore, for dielec-
trics, as treated by Ou and Chen �21�, we can approximately ex-
press these coefficients by the following values showing 10−10

smaller than those of commercial piezoelectric ceramics

k33 = d33/�
33
� s33

E = − 0.3 	 10−10 �3a�

k31 = d31/�
33
� s11

E = 0.4 	 10−10 �3b�

k15 = d15/�
11
� s55

E = 0.5 	 10−10 �3c�

where dij, sij, 
ij is the piezoelectric charge, elastic compliant, and
dielectric constants of the material, respectively.

After doing so, we can treat the semi-permeable interface crack
problem in elastic dielectric/piezoelectric bimaterials in the same
way as those in two dissimilar piezoelectric materials by directly
using the Stroh formulations �5,18�.

Material constants of 5 elastic dielectrics are listed in Table 1
and those of 7 piezoelectric materials are listed in Table 2, respec-
tively. It is seen from detailed comparisons between Table 1 and
Table 2 that the material properties of the 5 elastic dielectric ma-
terials have quite different properties from those of the 7 piezo-
electric materials due to the following three reasons. First, as we
mentioned earlier, the piezoelectric coefficients of the elastic di-
electric materials, say, the mechanical-electric coupling coeffi-
cients k33, k31, and k15 are extremely small but never zero �see
Eqs. �3a�–�3c��. Second, we notice in Tables 1 and 2 that the
permittivities of the 5 elastic dielectric materials, say 
11 and 
33,
are only 4–10 times larger than air/vacuum, which show the same
order in magnitude as compared to silicon oil with 2.5 times larger

Table 1 Material constants of 5 typical elastic dielectric materials

Epoxy Polymer Al2O3 SiC Si3N4

c11 1010 N m−2 0.80 0.386 47.0804 49.9391 41.7308
c12 1010 N m−2 0.44 0.257 14.4626 11.9433 17.8846
c13 1010 N m−2 0.44 0.257 14.4626 11.9433 17.8846
c33 1010 N m−2 0.80 0.386 47.0804 49.9391 41.7308
c44 1010 N m−2 0.18 0.064 16.3089 18.9979 11.9231

e13 10−10 C m−2 −1.3275�0 −1.3530�0 −16.647�0 −17.596�0 −15.109�0
e33 10−10 C m−2 1.1877�0 0.8152�0 22.029�0 24.877�0 17.124�0
e15 10−10 C m−2 1.0531�0 0.9069�0 15.196�0 16.402�0 12.993�0


11 10−10 C�V m�−1 0.372 0.797 0.885 0.885 0.885

33 10−10 C�V m�−1 0.372 0.797 0.885 0.885 0.885

Table 2 Material constants of 7 typical piezoelectric ceramics

Material constant PZT-4 PZT-5H PZT-6B PZT-7A P-7 BaTiO3 PZT-PIC 151

c11 1010 N m−2 13.9 12.6 16.8 14.8 13.0 15.0 11.0
c12

7.78 5.50 6.00 7.62 8.30 6.60 6.3
c13

7.43 5.30 6.00 7.42 8.30 6.60 6.4
c33

11.3 11.7 16.3 13.1 11.9 14.6 10.0
c44

2.56 3.53 2.71 2.54 2.50 4.4 2.0

e13 C m−2 −6.98 −6.50 −0.90 −2.10 −10.3 −4.35 −9.6
e33

13.8 23.3 7.10 9.50 14.7 17.5 15.1
e15

13.4 17.0 4.60 9.70 13.5 11.4 12.0


11 10−10

C�V m�−1

60.0 151 36.0 81.1 171 98.7 98.2


33
54.7 130 34.0 73.5 186 112 75.4
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permittivity than air/vacuum, whereas the 7 piezoelectric materi-
als have much larger permittivity than those of dielectrics. As
pointed out by McMeeking �22–24�, the permittivities of commer-
cial piezoelectric materials have 1000 times larger than air/
vacuum. Thirdly, we notice in Tables 1 and 2 that the elastic
coefficients of epoxy and polymer �softer elastic dielectrics�, say
c11 and c33, are much smaller than those of the 7 piezoelectric
materials �at least 10 times smaller�, e.g., the value of c11 for
epoxy is merely 0.8	1010 N /m2, 17.38 times smaller than PZT-4
�13.9	1010 N /m2�; in contrast, c11 and c33 of Al2O3, SiC, and
Si3N4 �harder elastic dielectrics� are much larger than those of the
7 piezoelectric materials �about 3 times larger�, e.g., the value of
c11 for Al2O3 is 47.08	1010 N /m2, 3.39 times larger than PZT-4.
In this paper, we call the first and second differences mentioned
above as the electric mismatch properties and call the third feature
as the mechanical mismatch properties of the bimaterials, bearing
in mind that all of them are coupled in the constitutive equations
of piezoelectric materials. A question is, which one plays a more
important role in singularity analysis and energy analysis for an
interface crack in such bimaterials? This question needs to be well
studied. Indeed, an interface crack in elastic dielectric/
piezoelectric bimaterials may have quite different features from
those in two dissimilar piezoelectric materials �15–18�. This is
because the differences in the elastic, piezoelectric, and permittiv-
ity coefficients between two dissimilar piezoelectric materials are
not so remarkable, whereas the differences in the elastic, piezo-
electric and permittivity coefficients between an elastic dielectric
and a piezoelectric are always remarkable. In other words, an
elastic dielectric material and a piezoelectric material bonded
along their interface not only have a large mismatch in the electric
properties, but also have a large mismatch in the mechanical
properties.

Here, the material properties of the transversely isotropic piezo-
electric materials are always given by taking the x3 axis to be the
poling axis as shown in Fig. 1 and Table 2. In order to make
comparisons, four electric boundary conditions on the crack sur-
faces are considered below: �i� the crack is electrically conducting
�e.g., the gap filled with NaCI solution as did by Heyer et al. �30��,
�ii� the gap filled with air/vacuum, �iii� the gap filled with silicon
oil as did by Park and Sun �31,32�, and �iv� the crack is insulating
�impermeable crack�. We see that cases �ii� and �iii� can be di-
rectly treated by using Eq. �1� without any difficulty, correspond-
ing to �v=�0=8.85	10−12 C2 /Nm2 in air or vacuum and �v
=2.5�0 in silicon oil, respectively. However, cases �i� and �iv� are
two limited cases of Eq. �1� corresponding to �v→� �the conduct-
ing crack� and �v=0 �the impermeable crack�, respectively. Thus,
some approximations should be made. Following Ou and Chen
�21�, we can use a much smaller value of the permittivity than air
or vacuum, say �v=10−8�0, to approximately treat the imperme-
able crack model, and use a much larger value than commercial
piezoelectric materials, say �v=108�0, to approximately treat the
conducting crack. The relative errors in calculating the crack tip
ERR for these two extreme cases can be controlled within a rela-
tive error less than 0.1% by changing the value from �v=108�0 to
�v=1010�0 for case �i� and by changing the value from �v
=10−8�0 to �v=10−10�0 for case �iv�, respectively.

On the interface crack surfaces shown in Fig. 1, the generalized
stresses ��x2�=T0= �0,0 ,0 ,D3

0�T refer to the traction-free condi-
tions and the uniform normal electric displacement along the
semi-permeable interface crack, which yields a nonhomogenous
Riemann-Hilbert problem as expressed in the following form:

g+�x2� + H̄−1Hg−�x2� = K0 + T0 �x2� � a �4�

where the material matrix H, the unknown complex vector func-
tions g�z� and the constant complex vector K0 are given by Eqs.
�A25�, �A26�, and �A29� in the Appendix, respectively.

Without loss in generality, the homogeneous solution to Eq. �4�
can be expressed in the following form �5�:

g�z� = wz−1/2+i�� �5�

where w is a four-element column eigenvector and �� is a com-
plex number, and both of them can be determined by an eigen-
value problem expressed in the following form:

H̄w = e2���Hw �6�

By separating the matrix H into a real part denoted by D and an
imaginary part denoted by W, Eq. �6� can be rewritten as follows:

�D−1W + i
I�w = 0 �7�

where 
=−tanh�����, and the characteristic value problem Eq.
�7� leads to the following characteristic equation:

�D−1W + i
I� = 
4 + 2b
2 + c = 0 �8�

where �·� denotes the determinant of a matrix and

b = 1
4 tr��D−1W�2� c = �D−1W� �9�

Ou �17� and Ou and Wu �18� have studied an impermeable
interface crack in dissimilar piezoelectric materials. They have
theoretically proven that c=0 for all combinations of the different
transversely isotropic piezoelectric materials. They also found
that: the interface cracks in dissimilar piezoelectric materials
have either oscillatory singularity with nonzero � and vanishing �
or nonoscillatory singularity with nonzero � and vanishing �. As
is well known, the index � controls the oscillatory singularity and
the index � controls the magnitude of the nonoscillatory singular-
ity from the classical inverse square root singularity. However,
Beom and Atluri �15� studied a conducting interface crack and
Beom �16� studied a permeable crack in dissimilar piezoelectric
materials and found that the crack tip always shows an oscillatory
singularity. Our attention is focused on what happens for a semi-
permeable interface crack in elastic dielectric/piezoelectric bima-
terials to clarify whether the cracks in such bimaterials have the
similar results as Ou and Wu �18� or as Beom and Atluri �16�.
Solving the characteristic Eq. �8�, we can denote the roots of ��

corresponding to 
� ��=1,2 ,3 ,4� as � , −�, i�, and −i�, respec-
tively, where both � and � are well-known singularity parameters.
It is noticed that there are two cases with the real number b in �8�
and �9� less or larger than zero, respectively. If b�0, 
 is real
such that

� =
1

�
tanh−1	 1

�2
�− tr��D−1W�2�
 � = 0 �10�

In contrast, if b�0, 
 is a purely imaginary number, resulting in

� = 0 � =
1

�
tanh−1	 1

�2
�tr��D−1W�2�
 �11�

The associated linear independent eigenvector matrices w can
be determined by Eq. �7�. Thus, the four eigenpairs should have
the following structures:

��,w1� �− �,w2� �0,w3� �0,w4� �12�

It can be noticed that w1 is complex and w2= w̄1, but w3 and w4
are real. Suo et al. �5� have concluded that the eigenvectors
w� ��=1,2 ,3 ,4� in Eq. �A11� satisfy the certain orthogonal rela-
tions �A12� and �A13� related to the four distinct singularity pa-
rameters ��. In fact, Ting �33,34� has already found these rela-
tions. These relations have also been used by Deng and Meguid
�10� for treating the conducting inclusion between two dissimilar
piezoelectric materials.

Calculating numerical results of the singularity analysis at the
interface crack tip are listed in Table 3 for 35 types of such bima-
terials constructed by the 5 kinds of elastic dielectric materials:
epoxy, polymer, Al2O3, SiC, and Si3N4 and the 7 kinds of com-
mercial piezoelectric ceramics: PZT-4, BaTiO3, PZT-5H, PZT-6B,
PZT-7A, P-7, and PZT-PIC 151, respectively. We find from Table
3 that, unlike those of Ou �17� and Ou and Wu �18�, the singular
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parameters computed by Eq. �10� or �11� for the 35 kinds of
elastic dielectric/piezoelectric bimaterials always show the oscil-
latory singularity with the nonzero oscillatory index �, whereas
the nonoscillatory index � always vanishes. Moreover, the calcu-
lating values of � for most of the 35 kinds of bimaterials are
around 0.06, even though, in some cases, the maximum value of �
is 0.0884 for the PZT-4/SiC bimaterial and the minimum value of
� is 0.0463 for the Si3N4 /PZT-6B bimaterial. It is found that the
values of the oscillatory index � of these 35 kinds of elastic
dielectric/piezoelectric bimaterials are always much larger than
those of the �-class dissimilar piezoelectric materials. For ex-
ample, the 7 kinds of the �-class dissimilar piezoelectric materials
reported by Ou �17� have some smaller values of � as follows:
BaTiO3 /PZT-5H with �=0.0130; PZT-5H/PZT-6B with �
=0.0219; PZT-5H/PZT-7A with �=0.0069; PZT6B/PZT-7A with
�=0.0055; PZT-6B/P-7 with �=0.0121; PZT-4/PZT-PIC151 with
�=0.0095; PZT-6B/PZT-PIC151 with �=0.0134, respectively.
Obviously, this is because the mechanical mismatch properties for
the 35 kinds of elastic dielectric/piezoelectric bimaterials are al-
ways much larger than the 7 kinds of dissimilar piezoelectric ma-
terials. In other words, the differences in elastic moduli between
elastic dielectric and piezoelectric are always remarkable, whereas
the differences between two dissimilar piezoelectric materials are
not so.

Mathematically, all combinations of the elastic dielectric/
piezoelectric bimaterials will lead to the double eigenvalue �=0;
hence some new orthogonal relations should be introduced to re-
place Eqs. �A12� and �A13�. These results are similar to those in
dissimilar elastic anisotropic materials, implying again that
the mechanical mismatch properties are more important than the
electric mismatch properties in elastic dielectric/piezoelectric
bimaterials.

According to the characteristic Eq. �6�, the associated eigenvec-
tors satisfy

H̄w1 = e2��Hw1 H̄w2 = e−2��Hw2 H̄w3 = Hw3 H̄w4 = Hw4

�13�

After some manipulations, we demonstrate that w� would satisfy
the following new orthogonal relations:

�
w1

T

w2
T

w3
T

w4
T
�H�w1,w2,w3,w4�

= �
0 w1

THw2 0 0

w2
THw1 0 0 0

0 0 w3
THw3 0

0 0 0 w4
THw4

� �14�

which provide a powerful self-examination method to confirm the
present numerical results.

It is obvious that the above orthogonal relations are different
from those obtained by Ting �33,34� and Suo et al. �5�. It is con-

venient to display physical quantities in an eigenvector represen-
tation. The potential functions g�z� and constant vector T can be
spanned by the eigenvector w� as

g�z� = g1�z�w1 + g2�z�w2 + g3�z�w3 + g4�z�w4 �15�

T = K0 + T0 = t1w1 + t2w2 + t3w3 + t4w4 �16�
Substituting Eqs. �15� and �16� into �4�, we obtain the following

decoupled Hilbert equations

g�
+�x2� + e2���g�

−�x2� = t� �� = 1,2,3,4� �17�
The solution procedures follow those developed by England

�35�, yielding

g��z� =
t�

1 + e2���
	1 − 
 z − a

z + a
�−i�� z − 2i��a

�z2 − a2 

+ 
 z − a

z + a
�−i�� c0

� + c1
�z + ¯ + cn

�zn

�z2 − a2
�18�

By substituting Eqs. �18� and �16� into Eq. �15�, the potential
functions g�z� can be given as follows:

g�z� = w�� 1

1 + e2���
	1 − 
 z − a

z + a
�−i�� z − 2i��a

�z2 − a2 
��w−1�K0 + T0�

+ w��
 z − a

z + a
�−i����c0 + c1z + ¯ + cnzn

�z2 − a2
�19�

where ��·�� indicates the diagonal matrix, in which each compo-
nent varies according the Green index �, cn= �cn

1 ,cn
2 ,cn

3 ,cn
4�T being

unknown constant vectors.
To find cn, we can take the limit as z→� in Eq. �19� and use

the far-field uniform loading condition, and then obtain the fol-
lowing formulation:

c1 = �� 1

1 + e2���
��w−1�T� + K0� cn = 0 �n � 1� �20�

where T�=Bf����+ B̄f̄����= ��32
� ,�33

� ,�31
� ,D3

��T.
In deriving Eq. �20�, the following relations have been used

w−1�I + H̄−1H�w = ��1 + e2����� �21�
It should be emphasized that the determination of the unknown

constants c0 in Eq. �19� needs to use the single-valued condition
of generalized displacement �u �see Eq. �A4� in Appendix�

�
Lc

�u�z�dz = 0 �22�

Combining Eqs. �A27�, �19�, and �22�, we can obtain

c0 = �� − 2i��a

1 + e2���
��w−1�T� + K0� �23�

Table 3 Oscillatory index � with vanishing index � for the semi-permeable interface crack in
35 kinds of elastic dielectric/piezoelectric bimaterials

�=0, �= Epoxy Polymer Al2O3 SiC Si3N4

Piezoelectric
material

PZT-4 0.0626 0.0500 0.0864 0.0884 0.0810
BaTiO3

0.0650 0.0509 0.0638 0.0655 0.0592
PZT-5H 0.0630 0.0502 0.0856 0.0877 0.0802
PZT-6B 0.0651 0.0510 0.0498 0.0510 0.0463
PZT-7A 0.0639 0.0506 0.0553 0.0565 0.0520
P-7 0.0629 0.0502 0.0579 0.0590 0.0547
PZT-PIC 151 0.0608 0.0492 0.0861 0.0878 0.0817
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Thus, the full-generalized stress fields for the semi-permeable
interface crack in elastic dielectric/piezoelectric bimaterials can be
expressed as follows:

��z� = T0 + w��
 z − a

z + a
�−i�� z − 2i��a

�z2 − a2 ��w−1�T� − T0� �24�

The jump of mechanical displacement and the drop of electric
potential along the crack line �−a�x2�a� are given by integrat-
ing �A27� and considering �19�

�u�x2� = Hw��exp�− �����a − x2�1/2−i���a + x2�1/2+i����w−1�T�

− T0� �25�

Since �� generally has a value much smaller than 1 /2, varying
around 0.06 for the 35 kinds of elastic dielectric/piezoelectric bi-
materials �see Table 3�, the jump of mechanical displacement and
the drop of electric potential along the crack line �−a�x2�a� can
be approximately obtained as

u3
+ − u3

− � H2w��exp�− ������w−1�T� − T0��a2 − �x2�2 �26�

�+ − �− � H4w��exp�− ������w−1�T� − T0��a2 − �x2�2 �27�

where H2 and H4 are the second and forth rows of H, respec-
tively.

By substituting Eqs. �26� and �27� into the semipermeable elec-
tric boundary condition �1�, the normal component of electric dis-
placement D3

0 inside the crack can be derived by

D3
0 = − �v

�+ − �−

u3
+ − u3

− = − �v
H2w��exp�− ������w−1�T� − T0�
H4w��exp�− ������w−1�T� − T0�

�28�

bearing in mind that Eq. �28� is a quadratic equation for unknown
D3

0 as mentioned by Xu and Rajapakse �29�.
The emphasis here is focused on the distribution of the electro-

mechanical fields near the crack tip. For this purpose, it is conve-
nient to introduce the polar coordinates �r ,�� with the origin at the
right crack tip. Thus, the singular generalized stress fields along
the bonded interface near the crack tip can be derived as the polar
coordinate system �r ,��→0

��r� =
1

�2�r
Y�r−i����T� − T0� �29�

where

Y�r−i��� = w����a
 r

2a
�−i��

�1 − 2i�����w−1 �30�

Since all combinations constructed from each pair of elastic
dielectric material and transversely isotropic piezoelectric material
considered in Table 3 lead to the same results, i.e., the first crack-
tip oscillatory index � does not vanish but the second parameter �
does always vanish, it can be concluded that the semi-permeable
interface crack singularities in elastic dielectric/piezoelectric bi-
materials are governed by the first parameter �, regardless of the
second parameter �. This indicates that the structure of the singu-
lar field near the semi-permeable crack tip in such bimaterials
consists of the inverse square root singularity r−1/2 and a pair of
oscillatory singularities r−1/2±i�. In other words, from the physical
point of view, an interface crack under the semi-permeable elec-
tric boundary condition in such bimaterials always shows an
oscillating singularity as those in dissimilar elastic anisotropic ma-
terials.

Thus, the vector of real-valued stress and electric displacement
intensity factors, which uniquely characterize the singular fields at
the semi-permeable interface crack tip can be defined as �Beom
and Atluri �6��

K = lim
r→0

�2�rY�ri�����r� �31�

where K= �KII ,KI ,KIII ,KD�T, the intensity factor K may be con-
sidered as an extension of the elastic version proposed by Wu �36�
and Qu and Li �37�.

Furthermore, the crack tip energy release rate �ERR� can be
obtained by using the crack closure integral. With the right crack-
tip extending by a small amount �a, the crack tip ERR can be
expressed as

G = lim
�a→0

1

2�a�0

�a

��3i�r��ui��a − r�

+ D3�r�����a − r��dr �i = 1,2,3� �32�
where

ui��a − r� = ui��a − r,�� − ui��a − r,− ��
and

����a − r� = ���a − r,�� − ���a − r,− ��
denote the jump of mechanical displacement and the drop of the
electric potential jump across the interface crack, respectively.

Substituting the crack tip generalized stress field �29� and the
jump of generalized displacement �25� across the crack into the
closure integral �32� gives

G =
a

2
�T� − T0�THw � 
� � w−1�T� − T0� �33�

where


� =


−
1

2
+ i����

sin	
−
1

2
+ i����
 e−����1 + 2i��� .

In deriving Eq. �33�, we have used the orthogonal relation de-
scribed above in Eq. �14�, and the identity

�
0

1

tq�1 − t�−qdt = q�/sin q� �Re�q�� � 1 �34�

with q= �−1 /2+ i���.

3 Numerical Results and Discussions
This section deals with numerical results and discussions for

interface cracks in 5 kinds of elastic dielectric/piezoelectric bima-
terials constructed by PZT-4 and 5 kinds of elastic dielectrics
whose material coefficients are listed in Table 1.

First, following Xu and Rajapakse �29�, we focus our attention
on the solution for the normal electric displacement D3

0 along the
interface crack obtained from Eq. �28� in the PZT-4/polymer bi-
material. It is noted that Eq. �28� is a quadratic equation of D3

0.
Generally speaking, there are two distinct roots, while only one of
them is physically admissible for a given far-field electromechani-
cal loading. Let root 1 �D3

01� and root 2 �D3
02� denote the two roots

whose numerical results are listed in Table 4 under a uniform
mechanical loading, �33

� =5 MPa, and a varying electrical loading,
D3

�=−0.4	10−4 C /m2, −0.2	10−4 C /m2, 0, 0.2	10−4 C /m2,
and 0.4	10−4 C /m2, for an interface crack of length 2 mm in the
four kinds of electric boundary conditions along the crack sur-
faces with �a=108�0, �v=�0, �v=2.5�0, and �v=10−8�0, respec-
tively. It can be seen from Table 4 that the five different values of
the applied electrical loading in each case result identical values
for the root 1 and quite different values for the root 2. As pointed
out by Xu and Rajapakse �29�, only D3

02 with a negative sign is
reasonable since it has different values under varying electrical
loadings, which mirrors the effect of the remote electrical loading,
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whereas the value of D3
01 should be eliminated in every case �29�.

Similar conclusions hold for the other 4 bimaterials, i.e., PZT-4/
epoxy, PZT-4 /Al2O3, PZT-4/SiC, and PZT-4 /Si3N4, respectively.
It should be emphasized that some nonlinear features in the sub-
sequent calculations such as the crack tip ERR will occur due to
the determination of D3

02.
Second, we make a detailed energy analysis for the interface

crack under the 4 kinds of electric boundary conditions from �i� to
�iv�. In order to provide some useful numerical results and to
shorten the length of this paper, only 5 kinds of bimaterials: PZT-
4/polymer, PZT-4/epoxy, PZT-4 /Al2O3, PZT-4/SiC, and PZT-
4 /Si3N4 are considered below under some fixed mechanical load-

ings, say 1 MPa, 5 MPa, 10 MPa, and 20 MPa, respectively, and
a varying electric field from −0.6 MV /m to 0.6 MV /m. Numeri-
cal results of the crack tip ERR are plotted in Figs. 2�a�–2�d�,
3�a�–3�d�, 4�a�–4�d�, 5�a�–5�d�, and 6�a�–6�d�, respectively. It is
seen in all figures that the discrepancies between the real black
curves �referring to air or vacuum� and the imaginary curves �re-
ferring to the impermeable crack model� are always remarkable
and the relative errors induced from the impermeable crack model
can be over 100% or more. It is concluded that the crack tip ERR
under the impermeable crack model, i.e., the case �iv� mentioned
above, is incorrect as McMeeking �22–24� pointed out. Let us
examine the results under other three cases �i�, �ii�, and �iii� in

Table 4 Normal electric displacement D3
0 along the interface crack based on Eq. „28… for the

PZT-4/polymer bimaterial under �33
� =5 MPa

D3
��C /m2� −0.4	10−4 −0.2	10−4 0 0.2	10−4 0.4	10−4

�v=10−8�0 D3
01 0.185 0.185 0.185 0.185 0.185

D3
02 −9.356	10−11 −4.793	10−11 −2.395	10−12 4.304	10−11 8.838	10−11

�v=�0 D3
01 4.387 4.387 4.387 4.387 4.387

D3
02 −3.932	10−4 −2.017	10−4 −1.009	10−5 1.815	10−4 3.731	10−4

�v=2.5�0 D3
01 10.690 10.690 10.690 10.690 10.690

D3
02 −4.0343	10−4 −2.0689	10−4 −1.0349	10−5 1.8619	10−4 3.8274	10−4

D3
01 4.202	108 4.202	108 4.202	108 4.202	108 4.202	108

�v=108�0 D3
02 −4.105	10−4 −2.105	10−4 −1.053	10−5 1.895	10−4 3.895	10−4

Fig. 2 The crack tip ERR for an interface crack in the PZT-4/polymer bimaterial against the applied electrical loading E3
� under „a…

�33
� =1 MPa, „b… �33

� =5 MPa, „c… �33
� =10 MPa, „d… �33

� =20 MPa

Journal of Applied Mechanics JANUARY 2008, Vol. 75 / 011010-7

Downloaded 04 May 2010 to 171.66.16.43. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



detail. It is seen that under the relatively small mechanical load-
ing, say 1 MPa, the maximum value of the crack tip ERR in Fig.
2�a� occurs nearly at the zero point of the applied electric field as
many previous researchers found for a semipermeable crack in
homogeneous cases. However, we will see that this is not always
true when the mechanical loading becomes larger and larger. For
example, when the mechanical loading becomes 5 MPa, the maxi-
mum value of the ERR shown in Fig. 2�b� does not occur at the
zero point, rather, it occurs at a negative electric field, say about
−0.15 MV /m, for the same crack in both air/vacuum and silicon
oil. This is due to the nonlinear feature of the semi-permeable
crack induced from the determination of D3

02, i.e., the quadratic
Eq. �28�, as found by Xu and Rajapakse �29� and reviewed by
Chen and Hasebe �38�. Moreover, under the 10 MPa mechanical
loading as shown in Fig. 2�c�, the maximum value of the ERR as
the electric field varies occurs at about −0.3 MV /m for the same
crack in both air/vacuum and silicon oil, far apart from the zero
point of the electric field. It is also seen from Fig. 2�d� that, when
the applied mechanical loading becomes much larger, say
20 MPa, the variable tendencies of the crack tip ERR against the
electric field are quite different from those for the same crack
subjected to the smaller mechanical loadings mentioned above.
Indeed, as the electric field varies from
−0.6 MV /m to 0.6 MV /m, the values of ERR for the crack in
both air/vacuum and silicon oil always decrease. In other words,
the maximum value occurs at −0.6 MV /m, far apart from those in
Figs. 2�b� and 2�c� for the 10 MPa or 20 MPa mechanical loading.
It is concluded that the larger the mechanical loading, the larger

the discrepancy of the maximum value of ERR from the zero
point of the applied electric field. That is, the larger mechanical
loading not only decreases the magnitude of the crack tip ERR,
but also shifts the variable curves of the crack tip ERR from the
right side �referring to the positive electric field� to the left side
�referring to the negative electric field�. This load-dependent fea-
ture provides a better understanding of the failure mechanism of
the interface crack stability in elastic dielectric/piezoelectric bima-
terials when a large mechanical loading is preferred at infinity.
That is, as the influence of the permittivity of the medium inside
the crack gap depends on how large the crack opening is, the
different levels of the applied mechanical loading yielding differ-
ent levels of crack opening may change the relations between the
failure mechanism and the applied electric field.

It is seen from Fig. 2�a� that when the applied mechanical load-
ing is lower, say 1 MPa, and the applied electric field varies from
−0.6 MV /m to 0.6 MV /m, the influence of the permittivity in-
side the crack gap on the crack tip ERR for a PZT-4/polymer
bimaterial is very small. That is, the maximum relative error be-
tween the ERR values calculated from the conducting crack and
those from the semi-permeable crack with air or vacuum is less
than 3%. Of great interest is that the calculated values of the ERR
with silicon oil are more likely tending to those for the conducting
crack rather than to those with air or vacuum. Similar conclusions
can be seen in Figs. 3�a�, 4�a�, 5�a�, and 6�a� for other four bima-
terials: PZT-4/epoxy, PZT-4 /Al2O3, PZT-4/SiC, and PZT /Si3N4,
respectively. However, when the applied mechanical loading be-
comes larger and larger, say 5 MPa, 10 MPa, or 20 MPa, the in-

Fig. 3 The crack tip ERR for an interface crack in PZT-4/epoxy bimaterial against the applied electrical loading E3
� under „a…

�33
� =1 MPa, „b… �33

� =5 MPa, „c… �33
� =10 MPa, „d… �33

� =20 MPa
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fluence of the permittivity on the crack tip ERR becomes larger
and larger since the crack opening becomes larger and larger. It is
seen from Figs. 2�b�–2�d� that the relative errors between the ERR
values calculated from the conducting crack and those from the
semi-permeable crack with air or vacuum can be larger than 3.9%,
5.2%, and 7.1%, respectively, whereas the curves of the ERR in
silicon oil are still tending to those for the conducting crack rather
than to those in air or vacuum. Similar conclusions can be seen in
Figs. 3�b�–3�d� for PZT-4/epoxy bimaterial but the maximum rela-
tive error in Fig. 3�d� is merely 2.2%.

Let us see what happens for the bimaterials constructed by
PZT-4 and some harder elastic dielectrics whose elastic moduli
are much larger than commercial PZTs. Figures 4�a�–4�d�, 5�a�–
5�d�, and 6�a�–6�d� show the curves of the crack tip ERR for the
three kinds of bimaterials: PZT-4 /Al2O3, PZT-4/SiC, and PZT-
4 /Si3N4, respectively. Of the most significance is that all relative
errors between the ERR values calculated from the semi-
permeable crack and those from the conducting crack are always
less than 1% no matter how large the mechanical loading is within
the range of practical interest. In other words, the harder elastic
dielectric materials yield much smaller discrepancies of the crack
tip ERR than softer dielectric materials such as polymer and ep-
oxy!

Nevertheless, in all cases from Figs. 2�a�–2�d� to Figs.
6�a�–6�d� the conducting crack model always provides a good
approximation of the semi-permeable crack in a tolerant way and
the influences of the permittivity of the medium inside the inter-
face crack gap could be entirely neglected in practical applica-

tions. In other words, whenever the elastic dielectric materials are
softer or harder than PZTs, discrepancies in the crack tip ERR are
less than 8% which is still within the tolerant range of engineering
applications although the mechanical mismatch plays a more im-
portant role than the electric mismatch. Here, as mentioned above,
we call the material mismatch on the interface from different me-
chanical properties of two dissimilar materials as the mechanical
mismatch, whereas we call the material mismatch on the interface
from different electric properties of two dissimilar materials as the
electric mismatch, although both kinds of mismatch are coupled in
constitutive equations of piezoelectric materials.

Therefore, the present investigation provides a positive note to
Beom and Atluri �15� or Beom �16� who used the conducting or
permeable crack model to treat interface cracks in dissimilar pi-
ezoelectric materials although they have not provided numerical
results for certain combinations of dissimilar materials. As men-
tioned above, in all cases the influence of the permittivity of a
medium inside a crack gap on the crack tip ERR against the ap-
plied electric field is significantly dependent on the level of the
applied mechanical loading. The larger the mechanical loading,
the larger the influence. The values of the crack-tip ERR in silicon
oil are always more likely tending to those of a conducting crack
rather than to those in air or vacuum. This is mainly because the
permittivities of the 5 elastic dielectric materials are merely 4–10
times larger than air or vacuum, they have the same order in
magnitude as that of silicon oil with permittivity 2.5 times larger
than air.

Fig. 4 The crack tip ERR for an interface crack in PZT-4/Al2O3 bimaterial against the applied electrical loading E3
� under „a…

�33
� =1 MPa, „b… �33

� =5 MPa, „c… �33
� =10 MPa, „d… �33

� =20 MPa
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4 Conclusions
Based on the extended Stroh formalism, the solution for a semi-

permeable interface crack problem in elastic dielectric/
piezoelectric bimaterials is obtained. The influences induced from
different permittivities of the medium inside the crack gap are
studied in detail. Both softer dielectrics such as epoxy or polymer
and harder dielectric such as Al2O3, SiC, and Si3N4 are consid-
ered by combining each of them with the 7 commercial piezoelec-
tric ceramics: PZT-4, BaTiO3, PZT-5H, PZT-6B, PZT-7A, P-7,
respectively, and then 35 kinds of elastic dielectric/piezoelectric
bimaterials are studied in detail. Two kinds of material mismatch
properties are defined: the first is the mechanical mismatch prop-
erties accounting for the material mismatch induced from the dif-
ferent mechanical properties of the two dissimilar materials and
the second is the electric mismatch properties induced from the
different electric properties of the two dissimilar materials. Energy
analyses reveal that in all bimaterials under consideration the dis-
crepancies between the semi-permeable crack model and the im-
permeable crack model are always quite remarkable and the rela-
tive errors induced from the impermeable crack model can be over
100% or more. It is concluded that the crack tip ERR under the
impermeable crack model in such bimaterials, i.e., the case �iv�
mentioned above, is incorrect as McMeeking �22–24� pointed out
in homogeneous cases. In the other three cases �i�, �ii�, and �iii�
mentioned in the Introduction, the semi-permeable interface
cracks in elastic dielectric/piezoelectric bimaterials are governed
mainly by the mechanical mismatch although both kinds of mate-
rial mismatch properties are coupled in constitutive equations of

piezoelectric materials. That is, for harder dielectric/piezoelectric
bimaterials the semi-permeable crack model yields nearly the
same results as those of the conducting crack model with a rela-
tive error less than 1% even under a very large mechanical load-
ing, say 20 MPa, whereas for softer dielectric/piezoelectric bima-
terials the semi-permeable crack model yields relatively larger
discrepancies from those of the conducting crack model. How-
ever, in all cases, the relative errors are always less than 8% under
a very large mechanical loading, say 20 MPa, and under a varying
electric field from −0.6 MV /m to +0.6 MV /m. This clearly re-
veals that the conducting interface crack model studied by Beom
and Atluri �15� or the permeable crack model studied by Beom
�16� does still provide a good approximation to the semi-
permeable crack model in the elastic dielectric/piezoelectric bima-
terials, whatever the elastic dielectrics are softer or harder. Of
great interest is that the calculated values of the ERR with silicon
oil are more likely tending to those for the conducting crack rather
than to those with air or vacuum. The present investigation also
reveals that the variable tendencies of the crack tip ERR against
the applied electric field have an interesting load-dependent fea-
ture when the applied mechanical loading increases. This feature
is due to the nonlinear relation between the NEDC and the applied
electromechanical loadings from a quadratic equation. That is, the
larger mechanical loading not only decreases the magnitude of the
crack tip ERR, but also shifts the variable curves of the ERR
when the applied electric field varies from −0.6 MV /m to
+0.6 MV /m.

Fig. 5 The crack tip ERR for an interface crack in PZT-4/SiC bimaterial against the applied electrical loading E3
� under „a… �33

�

=1 MPa, „b… �33
� =5 MPa, „c… �33

� =10 MPa, „d… �33
� =20 MPa
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Appendix: The Extended Stroh’s Formalism Developed
by Suo et al. [5]

The complete set of basic equations for a linear piezoelectric
solid is �see, Barnett and Lothe �39��

��ij = Cijkluk,l + ekij�,k

Di = eikluk,l − 
ik�,k
� Constitutive equations �A1�

��ij,j = 0

Di,i = 0
� Equilibrium equations �A2�

where �ij, ui, Di, and � are separately the stress components,
mechanical displacement components, electric displacement com-

ponents, and electric potential; Cijkl, ekij, and 
ik are the elastic,
piezoelectric, and dielectric constants of the material, respectively.

The focus of this paper will be placed on two-dimensional,
generalized plane strain problems where all stress and displace-
ment components in a three-dimension space remain nonzero, but
they depend on two coordinates, say, x2 ,x3 only. Assume that the
field ui and � are

u = af�z� z = x2 + px3 �A3�

u = �u2,u3,u1,��T a = �a1,a2,a3,a4�T �A4�

where the superscript T indicates transposition. Substituting Eqs.
�A3� and �A4� into Eqs. �A1� and �A2�, we obtain the following
characteristic value problems:

��Ci2k2 + p�Ci2k3 + Ci3k2� + p2Ci3k3�ak + �e2i2 + p�e3i2 + e2i3� + p2e3i3�a4 = 0

�e2k2 + p�e2k3 + e3k2� + p2e3k3�ak − �
22 + p�
23 + 
32� + p2
33�a4 = 0
� �A5�

Fig. 6 The crack tip ERR for an interface crack in PZT-4/Si3N4 bimaterial against the applied electrical loading E3
� under „a…

�33
� =1 MPa, „b… �33

� =5 MPa, „c… �33
� =10 MPa, „d… �33

� =20 MPa
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or we write them in a compact form �5�

�Q + p�R + RT� + p2T�a = 0 �A6�

where Q, R, and T are 4	4 material matrices defined as

Q = 	ci2k2 e2i2

e2k2 − 
22

 R = 	ci2k3 e3i2

e2k3 − 
23

 T = 	ci3k3 e3i3

e3k3 − 
33



�A7�

A nontrivial solution of the vector a requires that

�Q + p�R + RT� + p2T� = 0 �A8�
where �·� denotes the determinant of a matrix. Solving the above
characteristic equation, we obtain eight eigenvalues, forming four
conjugate pairs,

p�+4 = p̄� a�+4 = ā� �� = 1,2,3,4� �A9�

With an auxiliary vector b� introduced by Suo et al. �5� and de-
fined as

b� = �RT + p�T�a� = − �1/p���Q + p�R�a� �A10�

we can, obtain two 4	4 nonsingular material characteristic ma-
trices A and B, as follows:

A = �a1,a2,a3,a4� B = �b1,b2,b3,b4� �A11�
Applying a similar procedure to that of Ting �33,34� and Suo et
al., �5�, we can construct the important orthogonal relations be-
tween A and B

ATB + BTA = I = ĀTB̄ + B̄TĀ

ATB̄ + BTĀ = 0 = B̄TA + ĀTB
�A12�

as well as the closure relations

AAT + ĀĀT = 0 = BBT + B̄B̄T

BAT + B̄ĀT = I = ABT + ĀB̄T
�A13�

Thus, for a generalized plane strain deformation of a linear
anisotropic piezoelectric solid, the general forms of the general-
ized displacement �mechanical displacement and electric poten-
tial� and the generalized stresses �mechanical stresses and electric
displacement� can be expressed as

u = �u2,u3,u1,��T = 2 Re�Af�z�� �A14a�

� = ��32,�33,�31,D3�T = 2 Re�Bf��z�� �A14b�

� = ��22,�23,�21,D2�T = − 2 Re�BPf��z�� �A14c�
where Re denotes the real part of a complex argument; a prime
� �� represents the derivative with respect to the variable of the
associated function,

f�z� = �f1�z1�, f2�z2�, f3�z3�, f4�z4��T

z� = x2 + p�x3 �� = 1,2,3,4� �A15�

and P is a diagonal matrix

P = diag�p1,p2,p3,p4� �A16�
Representation �A14� is known as extended Stroh’s formalism.

The continuity of the generalized stresses ��x2� across the x2
axis on both the bonded and cracked segments requires that

B1f1�
+�x2� + B̄1f̄1�

−�x2� = B2f2�
−�x2� + B̄2f̄2�

+�x2� �x2� � �

�A17�
Rearranging Eq. �A17�, we can obtain

B1f1�
+�x2� − B̄2f̄2�

+�x2� = B2f2�
−�x2� − B̄1f̄1�

−�x2� �x2� � �

�A18�

Define a new analytical function as

��z� =�B1f1��z� − B̄2f̄2��z� x3 � 0

B2f2��z� − B̄1f̄1��z� x3 � 0
� �A19�

and reduce Eq. �A18� to

�+�x2� − �−�x2� = 0 �x2� � � �A20�

The solution of Eq. �A20� is then given as follows �Muskhelishvili
�40��:

��z� = ���� �A21�
where

���� = B1f1���� − B̄2f̄2���� = B2f2���� − B̄1f̄1���� �A22�
Define the jump of the generalized displacements across the inter-
face crack

�u�x2� = u1
+�x2� − u2

−�x2� �A23�
Combining Eqs. �A14a�, �A21�, and �A23� yields

i�u��x2� = HB1f1�
+�x2� − H̄B2f2�

−�x2� − �Ȳ2 − Ȳ1�����
�A24�

where

H = Y1 + Ȳ2 Y1 = iA1B1
−1 Y2 = iA2B2

−1 �A25�
By defining

g�z� = �B1f1��z� x3 � 0

H−1H̄B2f2��z� + H−1�Ȳ2 − Ȳ1����� x3 � 0�
�A26�

Eqs. �A24� and �A14b� can be expressed as

i�u��x2� = H�g+�x2� − g−�x2�� �A27�

��x2� = g+�x2� + H̄−1Hg−�x2� − K0 �A28�
where

K0 = H̄−1�Y2 + Ȳ2����� �A29�
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A Time-Varying Stiffness Rotor
Active Magnetic Bearings Under
Combined Resonance
This paper is concerned with the nonlinear oscillations and dynamic behavior of a rigid
disk-rotor supported by active magnetic bearings (AMB), without gyroscopic effects. The
nonlinear equations of motion are derived considering a periodically time-varying stiff-
ness. The method of multiple scales is applied to obtain four first-order differential
equations that describe the modulation of the amplitudes and the phases of the vibrations
in the horizontal and vertical directions. The stability and the steady-state response of the
system at a combination resonance for various parameters are studied numerically, ap-
plying the frequency response function method. It is shown that the system exhibits many
typical nonlinear behaviors, including multiple-valued solutions, jump phenomenon,
hardening, and softening nonlinearity. A numerical simulation using a fourth-order
Runge-Kutta algorithm is carried out, where different effects of the system parameters on
the nonlinear response of the rotor are reported and compared to the results from the
multiple scale analysis. Results are compared to available published work.
�DOI: 10.1115/1.2755118�

Keywords: active magnetic bearings, combined resonance, periodic time-varying
stiffness

1 Introduction
Active magnetic bearings �AMBs� are being increasingly used

in rotating machinery applications as an alternative to conven-
tional mechanical bearings. The complicated nonlinear dynamics
that characterize rotor-AMB systems emphasize the necessity to
study their stability and nonlinearities to develop a better under-
standing of these systems. These nonlinearities necessarily intro-
duce a whole range of phenomena that are not found in linear
system �1�, including jump phenomena, occurrence of multiple
solutions, modulations, shift in natural frequencies, the generation
of combination resonances, evidence of period-multiplying bifur-
cations, and chaotic motions.

In the literature, several investigations �2–6� have reported par-
ticular advantages of nonlinear systems with time-varying stiff-
ness compared to those with constant stiffness. It is demonstrated
that the stable region in the parametric space for variant stiffness
systems is larger than the one for the invariant stiffness systems.
Another advantage, from the control point of view, is that the
stability and controllability in nonlinear systems with time-
varying stiffness are better than those in nonlinear systems with
the constant stiffness. Therefore, it is important for us to consider
the influence of time-varying stiffness on the nonlinear dynamics
of the rotor-AMB system, which will provide indications and di-
rections of the design of the actuators and controllers in the rotor-
AMB system.

There have been different studies conducted for the analysis of
linear systems with time-varying stiffness. Typical mechanical ex-
amples of a piecewise linear system with time-varying coefficients
appear in analyzing vibration of gear-pair systems �7–9�. The dy-
namic behavior of a piecewise nonlinear oscillator subject to a
periodically time-varying, piecewise nonlinear stiffness is studied
�10�, with a comparison between time-varying and time-invariant

systems. An adaptable vibration absorber with time-varying stiff-
ness was designed and investigated �11�, which showed that an
optimization of the time-varying stiffness yielded improvements
in root-mean-squared and peak displacements. It is well known
that cracks may appear in rotating shafts due to the fatigue of the
shaft material at sometime during the machine’s life. There are a
lot of papers dealing with rotordynamic systems in the presence of
shaft cracks with time-varying stiffness. However, for cracks
which periodically open and close in rotating shafts, known as
“breathing” cracks, the formulation is much involved. The dy-
namic behavior of the Laval rotor or Jeffcott rotor was analyzed
with the most simple crack model developed �12,13�. The simple
model represents the breathing crack as a linear time-varying stiff-
ness in the system, although for deeper cracks the nonlinearity of
the stiffness plays an important role. The performance of optimal
control methods on the response of a cracked rotor supported by
AMBs was examined �14�. It was found that the introduction of a
breathing crack alters the resulting vibration characteristics of the
system and significantly complicates the design and analysis of
the AMB controller. However, it was noted that in certain operat-
ing conditions, these vibration characteristics can be used to detect
the presence of the crack. The vibrational response of a cracked
rotating shaft subject to applied forces from AMBs was investi-
gated �15,16�. A combination resonance was identified using the
method of multiple scales and found that at this resonance, there is
a proportional relationship between the amplitude of the response
at the fundamental shaft frequency and the amplitude of the time-
dependent stiffness introduced by the breathing crack. This rela-
tionship provides a mechanism to detect and quantify the presence
of breathing cracks in rotating shafts.

One of the main challenging problems is to stabilize the rotor of
the magnetic bearing systems and its controllability, which means
the difficulty to get a stable spindle and controller. The model of a
parametrically excited two-degree-of-freedom nonlinear system
with quadratic and cubic nonlinearities was established �17� for
the first time for a rotor-AMB system with eight-pole legs and
time-varying stiffness. Furthermore, multipulse chaotic behavior
was investigated �18�, the asymptotic perturbation method was
utilized �19�, and the method of multiple scales was used �20� to
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examine nonlinear oscillations and chaotic dynamics in the same
rotor-AMB system. The results obtained indicate that the paramet-
ric excitation, or time-varying stiffness produced by the propor-
tional derivative �PD� controller is considered to have significant
influence on the responses of the rotor-AMB system.

The development of an AMB through theoretical and experi-
mental investigations attracts a large number of scientists. The
steady-state behavior of an auxiliary bearing/rotor system was
studied �21�. A systematic control design for magnetic bearing
systems subject to both input and state constraints was developed
�22�. A simple nonlinear model for a radial AMB system was
investigated, using a fully nonlinear force to displacement and the
force to current characteristics. Important nonlinear phenomena
was shown in Ref. �23�. The advantage of modern nonlinear dy-
namic tools is considered to study the steady-state response and
stability of rotors with their auxiliary bearings �24�. Multiple so-
lutions were obtained at resonance, and fractal boundaries sepa-
rate stable and unstable regions. The approximate methods were
used to examine the excitation parameters and geometric coupling
to find the regimes of the nonlinear behavior of rotor motion in
magnetic bearings, such as jumps and subharmonic motions �25�.
Nonlinear oscillations and Hopf bifurcation in a rotor-AMB sys-
tem were studied �26�. It was indicated that the steady-state solu-
tions lose their stability at either saddle node bifurcation or Hopf
bifurcation. Moreover, nonlinear oscillations, sadde-node, Hopf
bifurcation, and the effects of control constants and unbalance on
the nonlinear response of a rotor-AMB system were investigated
at primary, internal, and superharmonic resonances �27,28�. The
response of the system of a rigid rotor suspended by large air-gap
AMBs was investigated subject to single parametric and harmonic
excitation, using the perturbation method �29,30�. The effects of
different parameters on the system behavior and stability were
studied.

The present work examines the nonlinear response of a rotor-
AMB system with quadratic and cubic nonlinearities and time-
varying stiffness. The system is described by a two-degree-of-
freedom nonlinear ordinary differential equations. The
simultaneous primary and principal parametric resonance of the
system is studied applying perturbation methods up to the second-
order approximation. The frequency-response equation is numeri-
cally solved to obtain the steady-state solution, and the stability at
the combined resonance case is determined by the eigenvalues of
the corresponding Jacobian matrix. Rung–Kutta fourth-order
method is applied to explore the nonlinear, dynamic behavior of
the system. The time series solution of both modes of vibration is
obtained at nonresonant case and combined resonance case. The
effect of different parameters on the system behavior and its sta-
bility are investigated. Comparison to published work is reported.

2 Equations of Motion
The rotor-AMB system under investigation is a horizontal, uni-

form, symmetric shaft suspended by two identical radial AMBs at
both ends. Each active magnetic bearing is assumed to have a
stator of four pole pairs. The shaft is considered as one mass with
two degrees of freedom in the horizontal and vertical directions,
and assumed to be a rigid body in the AMBs. According to elec-
tromagnetic theory, the electromagnetic force Fi �shown in Fig. 1�
produced by ith opposed pair of electromagnets is �17�

Fi = −
1

4
�0N2A� �I0 + Ii�2

�C0 + �i�2 −
�I0 − Ii�2

�C0 − �i�2�cos �, i = 1,2,3,4

�1�

where �0 is the permeability, A is the effective cross-sectional
area of one electromagnet, N is the number of windings around
the core, C0 is the steady-state air gap between the stator and the
shaft �i, and i=1,2,3,4 denote the radial displacements of the rotor
in the i direction, � is the corresponding half angle of the radial
electromagnetic circuit, and 2� is the angle between the two radial

electromagnets, I0 is the bias current, and Ii is the control current
in the i direction that is given by

I1 = i1, Ii = i0 + ii, i = 2,3,4 �2�

where i0 is the static component of the control current ii, and i
=1,2,3,4 are the feedback components of the control current. Dif-
ferent control techniques have been used for magnetically sup-
ported rotors to achieve different goals, however the current
proportional-derivative �PD� controller is considered

ii = kp�i + kd�̇i, i = 1,2,3,4 �3�

where kp is the proportional gain, kd is the derivative gain, and �̇
is the velocity in the direction of the displacement �. Considering
the Cartesian coordinates x and y, and knowing that 2�=� /4, the
radial displacements of the rotor and the control current in the i
direction can respectively be written as

�1 = x, I1 = i1

�2 = x cos��

4
� + y sin��

4
�, I2 = i0 + i2

�3 = y, I3 = i0 + i3

�4 = x cos�3�

4
� + y sin�3�

4
�, I4 = i0 + i4 �4�

From the geometry of Fig. 1, the resultant electromagnetic forces
in the horizontal and vertical directions are of the form

Fx = F1 + F2 cos��

4
� + F4 cos�3�

4
�

Fy = F3 + F2 sin��

4
� + F4 sin�3�

4
� �5�

Substituting Eqs. �3� and �4� into Eq. �1�, gives the resulting force
as a nonlinear function of the control current and the rotor dis-
placements x and y. For small vibration amplitudes, Fx and Fy are
expanded about the �0,0� point using a Taylor series and is ap-
proximated up to third-order terms.

In our work, the proportional gain kp is assumed to have the
periodic from kp=k0+k1 cos �t+k2 cos 2�t, where � is the fre-

Fig. 1 Schematic for modeling magnetic forces acting on the
rotor
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quency of varying proportional gain. The resulting expressions for
the electromagnetic force resultants in the horizontal and vertical
directions are

Fx = − �̄1x − f̄11x cos �t − f̄12x cos 2�t + �̄2x3 + �̄3xy2 + �̄4xy

+ f̄13xy cos �t + f̄14xy cos 2�t + ��̄1 + 3�̄5x2 + 3�̄6xẋ + �̄5y2

+ 2�̄6yẏ�ẋ + �2�̄5xy + �̄6xẏ�ẏ + �̄7xẏ + �̄7ẋy �6�

Fy = − �̄1y − f̄21y cos �t − f̄22y cos 2�t + �̄2y3 + �̄3x2y − �̄4 + �̄5x2

+ �̄6y2 + f̄23x
2 cos �t + f̄24x

2 cos 2�t + f̄25y2 cos �t

+ f̄26y2 cos 2�t + ��̄1 + 3�̄5y2 + 3�̄6yẏ + �̄5x2 + 2�̄6xẋ�ẏ

+ �2�̄5xy + �̄6ẋy�ẋ + �̄7xẋ + �̄7yẏ �7�

where a= ��0AN2I0
2 /4C0

2� cos � is the coefficient of the electro-
magnetic force.

�̄1 =
4a

C0I0
�2C0k0 − 2I0 − �2I0� �kg/s2� ,

�̄2 =
2a

C0
3I0

2 �6I0
2 − 9C0I0k0 + 3C0

2k0
2 + 2�2I0

2� �kg/s2m2�

�̄2 = �̄3 = �̄3 =
6a

C0
3I0

2 �C0
2k0

2 − 3C0I0k0 + 2�1 + �2�I0
2� �kg/s2m2� ,

�̄4 =
4	2�a

C0
2I0

�2C0k0 − 3I0� �kg/s2m�

f̄11 =
8ak1

I0
�kg/s2� , f̄12 =

8ak2

I0
�kg/s2� ,

f̄13 =
8	2�ak1

C0I0
�kg/s2m�, f̄14 =

8	2�ak2

C0I0
�kg/s2m�

�̄1 = −
8akd

I0
�kg/m�, �̄5 =

2akd

C0
2I0

2 �2C0k0 − 3I0� �kg/sm2� ,

�̄6 =
2akd

2

C0I0
2 �kg/m2�, �̄7 =

4	2�akd

C0I0
�kg/sm�

�̄1 =
8a

C0I0
�C0k0 − �1 + �2�I0� �kg/s2�, �̄4 = 4a��1 + 	2� ,

�̄5 =
2	2a�

C0
2I0

�2C0k0 − 3I0� �kg/s2m�

�̄6 =
2a�

C0
2I0

��2	2 + 4�C0k0 − �3	2 + 6�I0� �kg/s2m� ,

�̄7 =
4�2 + 	2�a�kd

C0I0
�kg/sm�

f̄21 =
8ak1

I0
�kg/s2�, f̄22 =

8ak2

I0
�kg/s2� ,

f̄23 =
4	2�ak1

C0I0
�kg/s2m�, f̄24 =

4	2�ak2

C0I0
�kg/s2m�

f̄25 =
4�	2 + 2��ak1

C0I0
�kg/s2m� ,

f̄26 =
4�	2 + 2��ak2

C0I0
�kg/s2m�, � =

i0

I0
�8�

In the work presented herein, the rotor is assumed to be a rigid
body with two degrees of freedom, the weight of the rotor is
considered. The equations of motion governing the unbalance of
the model can be written as follows:

mẍ = Fx − cẋ + me	2 cos 	t, mÿ = Fy − cẏ + me	2 sin 	t + mg

�9�

where m, e, c, and 	 are the mass, the eccentricity of the rotor, the
damping coefficient, and the rotor speed, respectively. Setting y
=0 �steady-state motion� in Eq. �1�, the weight of the rotor is
therefore given by

mg =
�1 + 	2��0AN2

4
� �I0 + i0�2

C0
2 −

�I0 − i0�2

C0
2 �cos �

= 4�1 + 	2�
�0AN2I0

2

4C0
2 � i0

I0
�cos � = 4�1 + 	2�a� �10�

Substituting Eqs. �8�, �9�, and �12� into Eq. �11�, introducing the
nondimensional parameters x=C0x̄, y=C0ȳ, t=	mC0 /at̄, �

=	a / mC0 �̄, 	=	a / mC0	̄, letting �̄=c− �̄1 and omitting the
overbar for simplicity, the equations of motion governing the
model in nondimensional form can be written as follows:

ẍ + �� − 3�5x2 − 3�6xẋ − �5y2 − 2�6yẏ�ẋ − �2�5xy + �6xẏ�ẏ + �1
2x

− �7ẋy − �7xẏ − ��2x3 + �3xy2 + �4xy� + �2xf11

− xyf13�cos �t + �2xf12 − xyf14�cos 2�t = F cos 	t �11�

ÿ + �� − 3�5y2 − 3�6ẏy − �5x2 − 2�6ẋx�ẏ − �2�5xy + �6ẋy�ẋ + �2
2y

− �7xẋ − �7yẏ − ��2y3 + �3x2y + �5x2 + �6y2� − �x2f23 + y2f25

− 2yf21�cos �t − �x2f24 + y2f26 − 2yf22�cos 2�t = F sin,	t

�12�

where

� =	C0

ma
�̄, �5 =	C0

5

ma
�̄5, �6 =

C0
2

m
�̄6,

�7 =	C0
3

ma
�̄7, �7 =	C0

3

ma
�̄7, �1

2 =
C0

a
�̄1

�2 =
C0

3

a
�̄2, �3 =

C0
3

a
�̄3, �4 =

C0
2

a
�̄4, f11 =

C0

2a
f̄11,

f12 =
C0

2a
f̄12, f13 =

C0
2

a
f̄13, f14 =

C0
2

a
f̄14

F =
e	2

C0
, �2

2 =
C0

a
�̄1, �2 =

C0
3

a
�̄2, �3 =

C0
3

a
�̄3,

�5 =
C0

2

a
�̄5, �6 =

C0
2

a
�̄6, f21 =

C0

2a
f̄21

f22 =
C0

2a
f̄22, f23 =

C0
2

a
f̄23, f24 =

C0
2

a
f̄24, f25 =

C0
2

a
f̄25,

f26 =
C0

2

a
f̄26
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3 Perturbation Analysis
The method of multiple scales is applied to obtain a system of

four first ordinary differential equations, which describe the time
variation of the amplitudes and phases of the vibration in the
horizontal and vertical directions. Introducing the small perturba-
tion parameter 
, Eqs. �13� and �14� can be expressed as

ẍ + ��� − 3�5x2 − 3�6xẋ − �5y2 − 2�6yẏ�ẋ − ��2�5xy + �6xẏ�ẏ

+ �1
2x − ��7ẋy − ��7xẏ − ���2x3 + �3xy2 + �4xy� + ��2xf11

− xyf13�cos �t + ��2xf12 − xyf14�cos 2�t = �F cos 	t �13�

ÿ + ��� − 3�5y2 − 3�6yẏ − �5x2 − 2�6xẋ�ẏ − ��2�5xy + �6ẋy�ẋ

+ �2
2y − ��7xẋ − ��7yẏ − ���2y3 + �3x2y + �5x2 + �6y2�

− ��x2f23 + y2f25 − 2yf21�cos �t − ��x2f24 + y2f26

− 2yf22�cos 2�t = �F sin 	t �14�

Equations �13� and �14� describe a two-degree-of-freedom nonlin-
ear system with quadratic and cubic nonlinearities and time-
varying stiffness. Approximate solutions of nonlinear Eqs. �15�
and �16� are obtained using the method of multiple scales, assum-
ing x, y in the form of

x�t,�� = x0�T0,T1� + �x1�T0,T1� + O��2� �15�

y�t,�� = y0�T0,T1� + �y1�T0,T1� + O��2� �16�

where Tn=�nt, T0 is the fast time scale and T1 is the slow time
scale.

The time derivatives are

d

dt
= D0 + �D1,

d2

dt2 = D0
2 + 2�D0D1 + �2D1

2,

where

Dj =
�

�Tj
, j = 0,1

Substituting for x, ẋ, ẍ, and y, ẏ, ÿ in Eqs. �15� and �16�, and then
equating the coefficient of the same powers of 
 gives

�0:�D0
2 + �1

2�x0 = 0 �17�

�D0
2 + �2

2�y0 = 0 �18�

�1:�D0
2 + �1

2�x1 = − 2D0D1x0 − �� − 3�5x0
2 − 3�6x0D0x0 − �5y0

2

− 2�6y0D0y0�D0x0 + �2�5x0y0 + �6x0D0y0�D0y0

+ �7y0D0x0 + �7x0D0y0 − 2f11x0 cos �t

− 2f12x0 cos 2�t + �2x0
3 + �3x0y0

2 + �4x0y0

+ f13x0y0 cos �t + f14x0y0 cos 2�t + F cos 	t

�19�

�D0
2 + �2

2�y1 = − 2D0D1y0 − �� − 3�5y0
2 − 3�6y0D0y0 − �5x0

2

− 2�6x0D0x0�D0y0 + �2�5x0y0 + �6y0D0x0�D0x0

+ �7x0D0x0 + �7y0D0y0 − 2f21y0 cos �t

− 2f22y0 cos 2�t + �2y0
3 + �3x0

2y0 + �5x0
2 + �6y0

2

+ �f23x0
2 + f25y0

2�cos �t + �f24x0
2 + f26y0

2�cos 2�t

+ F sin 	t �20�
The general solution of �17� and �18� can be expressed in the form

x0�T0,T1� = A0�T1�exp�i�1T0� + cc �21�

y0�T0,T1� = B0�T1�exp�i�2T0� + cc �22�

where A0, B0 are complex functions in T1, which are defined in
the next section �cc denotes a complex conjugate of the preceding
term�. Substituting �21� and �22� into �19� and �20�, then the gen-
eral solution of the resulted equations is given by

x1�T0,T1� = A1�T1�exp�i�1T0� +
F

2��1
2 − 	2�

exp�i	T0� −
1

8�1
2 ��3i�5�1 − 3�6�1

2 + �2�A0
3�exp�3i�1T0� + f11A0
 1

��2�1 + ��
exp�i��1

+ ��T0� −
1

��2�1 − ��
exp�i��1 − ��T0�� + f12A0� 1

4���1 + ��
exp�i��1 + 2��T0� −

1

4���1 − ��
exp�i��1 − 2��T0��

−
1

2
f13A0B0
 1

2��2 + ����2 + 2�1 + ��
exp�i��1 + �2 + ��T0� +

1

2��2 − ����2 + 2�1 − ��
exp�i��1 + �2 − ��T0��

+
1

2
f13A0B̄0
 1

2��2 − ���2�1 − �2 + ��
exp�i��1 − �2 + ��T0� +

1

2��2 + ���2�1 − �2 − ��
exp�i��1 − �2 − ��T0��

−
1

2
f14A0B0
 1

2��2 + 2����2 + 2�1 + 2��
exp�i��1 + �2 + 2��T0� +

1

2��2 − 2����2 + 2�1 − 2��
exp�i��1 + �2

− 2��T0�� +
1

2
f14A0B̄0
 1

2��2 − 2���2�1 − �2 + 2��
exp�i��1 − �2 + 2��T0� +

1

2��2 + 2���2�1 − �2 − 2��
exp�i��1

− �2 − 2��T0�� −
1

4�2��1 + �2�
��i�5��1 + 2�2� − �6�2��2 + 2�1� + �3�A0B0

2
exp�i��1 + 2�2�T0�

+
1

4�2��1 − �2�
��i�5��1 − 2�2� + �6�2�2�1 − �2� + �3�A0B̄0

2
exp�i��1 − 2�2�T0� −
1

�2�2�1 + �2�
��i�7��1 + �2�

+ �4�A0B0
exp�i��1 + �2�T0� +
1

�2�2�1 − �2�
��i�7��1 − �2� + �4�A0B̄0
exp�i��1 − �2�T0� + cc �23�
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y1�T0,T1� = B1�T1�exp�i�2T0� −
iF

2��2
2 − 	2�

exp�i	T0� −
1

8�2
2 ��3i�5�2 − 3�6�2

2 + �2�B0
3�exp�3i�2T0� +

1

��2
2 − 4�1

2�
���5

− i�7�1�A0
2�exp�2i�1T0� +

1

��2
2 − �2�

�f23A0Ā0 + f25B0B̄0�exp�i�T0�� 1

��2
2 − 4�2�

�f24A0Ā0 + f26B0B̄0��exp�2i�T0�

− � 1

3�2
2 �i�7�2 + �6�B0

2�exp�2i�2T0� + f21B0
 1

��2�2 + ��
exp�i��2 + ��T0� +

1

��� − 2�2�
exp�i��2 − ��T0��

+ f22B0
 1

4���2 + ��
exp�i��2 + 2��T0� +

1

4��� − �2�
exp�i��2 − 2��T0�� +

1

2
f23A0

2
 1

�2
2 − �2�1 + ��2 exp�i�2�1

+ ��T0� +
1

�2
2 − �2�1 − ��2 exp�i�2�1 − ��T0�� −

1

2
f25B0

2
 1

��2 + ���3�2 + ��
exp�i�2�2 + ��T0�

+
1

�� − �2��� − 3�2�
exp�i�2�2 − ��T0�� +

1

2
f24A0

2
 1

�2
2 − 4��1 + ��2 exp�i�2�1 + 2��T0� +

1

�2
2 − 4��1 − ��2 exp�i�2�1

− 2��T0�� −
1

2
f26B0

2
 1

�2� + 3�2��2� + �2�
exp�i�2�2 + 2��T0� +

1

�2� − 3�2��2� − �2�
exp�i�2�2 − 2��T0��

−
1

4�1��2 + �1�
��i�5��2 + 2�1� − �6�1��1 + 2�2� + �3�B0A0

2
exp�i��2 + 2�1�T0� +
1

4�1��2 − �1�
��i�5��2 − 2�1�

+ �6�1�2�2 − �1� + �3�B0Ā0
2
exp�i��2 − 2�1�T0� +

1

�2 ��5A0Ā0 + �6B0B̄0� + cc �24�

where A1, B1 are complex functions in T1, which are still arbitrary
at this level of approximation. They can be determined by elimi-
nating the secular terms at the next approximation.

4 Stability of the System
Here, we study simultaneous primary and principal parametric

resonance as a combined resonance case, which has been con-
firmed numerically. Introducing the external detuning parameters
�i, and i=1,2 ,3 ,4 as

	 = �1 + ��1, 	 = �2 + ��2 �25�

� = 2�1 + ��3, � = 2�2 + ��4 �26�

and substituting �21�, �22�, �25�, and �26� into �19� and �20�, then
eliminating secular terms yields the solvability conditions as

��3i�5�1 + 3�6�1
2 + 3�2�A0

2Ā + �2i�5�1 + 2�6�2
2 + 2�3�A0B0B̄0

− 2i�1A0� − i��1A0� + ��i�5�2�2 − �1� + �6�2�2�1 − �2�

+ �3�Ā0B0
2
exp�i��3 − �4�T1� − f11Ā0 exp�i�3T1�

+
1

2
F exp�i�1T1� = 0 �27�

��3i�5�2 + 3�6�2
2 + 3�2�B0

2B̄ + �2i�5�2 + 2�6�1
2 + 2�3�B0A0Ā0

− 2i�2B0� − i��2B0� + ��i�5�2�1 − �2� + �6�1�2�2 − �1�

+ �3�B̄0A0
2
exp�i��4 − �3�T1� − f21B̄0 exp�i�4T1�

−
i

2
F exp�i�2T1� = 0 �28�

Expressing A0, B0 in the polar forms A0= �1 /2�a1 exp�i�1�, B0
= �1 /2�a2 exp�i�2� and separating real and imaginary parts, we
obtain the governing equations of the amplitudes �i and phases �i

a1� = −
1

2
�a1 − �f1 sin �3�a1 +

3

8
�5a1

3 +
1

4
�5a1a2

2

+ �m1 cos �4 + m2 sin �4�a1a2
2 + F1 sin �1 �29�

a1�1� = �1a1 − �f1 cos �3�a1 + m3a1
3 + m4a1a2

2

+ �m2 cos �4 − m1 sin �4�a1a2
2 + F1 cos �1 �30�

a2� = −
1

2
�a2 − �f2 sin �5�a1 +

3

8
�5a2

3 +
1

4
�5a2a1

2

+ �n1 cos �4 − n2 sin �4�a2a1
2 − F2 cos �2 �31�

a2�2� = �2a2 − �f2 sin �5�a2 + n3a2
3 + n4a2a1

2

+ �n2 cos �4 + n1 sin �4�a2a1
2 + F2 sin �2 �32�

where �i=�iT1−2�i; i=1,2; �3=�3T1−2�1; �4= ��3−�4�T1
+2��2−�1�; and �5=�4T1−2�2. F1,2 and f1,2 are defined in the
Appendix. The steady-state solutions correspond to constant a1,2
and �1,2; that is, a1,2� =0 and �1,2� =0. Then Eqs. �29�–�32� can be
reduced to a set of four nonlinear algebraic equations that is
solved numerically to obtain the steady-state responses. We have
following cases besides the trivial solution:

Case 1: a1=0 and a2�0. Squaring Eqs. �31� and �32�, then
adding the squared results together gives the following frequency
response equation:

�n3
2 +

9

64
�5

2�a2
6 + �2n3�2 −

3

8
��5�a2

4 + ��2
2 +

1

4
�2�a2

2

− �F2
2 + f2

2a2
2� = 0 �33�

Case 2: a1�0 and a2=0. Squaring Eqs. �29� and �30�, then
adding the squared results together gives the following frequency
response equation:
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�m3
2 +

9

64
�5

2�a1
6 + �2m3�1 −

3

8
��5�a1

4 + ��1
2 +

1

4
�2�a1

4

− �F1 − f1a1�2 = 0 �34�

Case 3: a1�0 and a2�0. Squaring Eqs. �29� and �30�, then
adding the squared results together, similarly to Eqs. �31� and �32�
gives the following frequency response equations:

s1a1
6 + s2a1

4 + s3a1
2 + s4a1 − F1

2 = 0 �35�

s5a2
6 + s6a2

4 + s7a2
2 + s8a2 − F2

2 = 0 �36�

The coefficients si, i=1,2 , . . . ,8 are defined in the Appendix.
To determine the stability of the fixed point solutions of Eqs.

�29�–�32�, we introduce the following forms:

A0 =
1

2
�p1 + iq1�ei�1T1, B0 =

1

2
�p2 + iq2�ei�2T1

where p1,2, q1,2 are real

Substitution the above forms of A0 and B0 into the linearized form
of Eqs. �27� and �28�, that is into

− i�1�2A0� + �A0� − f11Ā0 exp�i�3T1� +
1

2
F exp�i�1T1� = 0

�37�

− i�2�2B0� + �B0� − f21B̄0 exp�i�4T1� −
i

2
F exp�i�2T1� = 0

�38�
Then separating real and imaginary parts, gives the following
equations:

p1� +
1

2
�p1 − 
1q1 = 0 �39�

q1� + 
1p1 + 
2q1 = 0 �40�

p2� + 
4p2 + 
3q2 = 0 �41�

q2� + 
3p2 +
1

2
�q2 = 0 �42�

where 
i �i=1,2 ,3 ,4� are defined in the Appendix. The above
system is a first-order autonomous ordinary differential equations;
therefore, the stability of a particular fixed point with respect to an
infinitesimal disturbance proportional to e�t is determined by the
eigenvalues of the Jacobian matrix of the right-hand sides of Eqs.
�39�–�42�. The zeros of the characteristic equation �the eigenequa-
tion� are given by

�4 + l1�3 + l2�2 + l3� + l4 = 0 �43�

where li �i=1,2,3,4� are constants, given in the Appendix. Accord-
ing to the Routh–Hurwitz criterion, the necessary and sufficient
conditions for all the roots of Eq. �43� to possess negative real
parts is that

l1 � 0, l1l2 − l3 � 0, l3�l1l2 − l3� − l1
2l4 � 0, l4 � 0

5 Frequency Response Curves
In this section, we investigate the steady-state response of the

system at various parameters under combined resonance. The fre-
quency response �Eqs. �33�, �34�, and �36�� are solved, and the
stability is obtained from the eigenvalues of the corresponding
Jacobian matrix. The results are shown in Figs. 2–4 as the ampli-
tude a1,2 against the detuning parameter �1,2, respectively. The
stable and unstable branches of the plots are the solid and dashed
lines, respectively.

5.1 Response Curves of Case 1: a1=0 and a2Å0. Consid-
ering Fig. 2�a� as basic case for comparison, it can be seen from
Figs. 2�a� and 2�b� and Figs. 2�a�–2�c� that as the parametric
excitation force amplitude f21 decreases and the natural frequency
�2 increases, the branches of the response curves converge to each
other, the region of unstable solutions and the amplitude decrease.
The response curves in Fig. 2�d� are slowly converge to each other
as the damping coefficient � increases, while the amplitude
decreases.

Figures 2�e�–2�i� illustrate the variation of steady-state ampli-
tude as the nonlinear terms �5, �6, and �2 are varied. Further-
more, Figs. 2�g� and 2�h� show several representative curves for
the nonlinear term �6. Comparing these curves shows that the
nonlinearity effect �either hardening or softening nonlinearity�
bends the frequency response curves to right when �6 is negative
and to left when �6 is positive. This leads to a multivalued solu-
tions and, hence, to jump phenomenon occurrence.

5.2 Response Curves of Case 2: a1Å0 and a2=0. The re-
sults of case 2 are shown in Fig. 3 as the amplitude a1 against the
detuning parameter �1. Figure 3�c� illustrates that as the external
force amplitude F decreases the branches of the response curve
converge to each other, the region of unstable solutions decreases.
It can be seen from Figs. 3�d� and 3�f� that as the natural fre-
quency �1 and nonlinear parameter �2 increase, the steady-state
amplitude decreases. Other parameters have similar effects as re-
ported in case 1.

5.3 Response Curves of Case 3: a1Å0 and a2Å0. The
curves in Fig. 4 are plotted as the amplitude a2 against the detun-
ing parameter �2. The nonlinear coefficient �3, Fig. 4�i� and the
natural frequency �1, Fig. 4�j�, have trivial effect on the frequency
response curves. Whereas other figures illustrate the same behav-
ior of the remaining parameters, which was explained in two cases
1 and 2.

6 Numerical Solution
To verify analytic predictions, Eqs. �13� and �14� are numeri-

cally integrated using a fourth-order Runge–Kutta algorithm. A
nonresonant system behavior is shown in Fig. 5. The behavior of
the system under combined resonant conditions, Fig. 6, illustrates
that the steady-state amplitude in the horizontal and vertical direc-
tions is increased to about 300% and 550%, respectively.

6.1 Effect of External Excitation Force Amplitude. Figure
7�a� illustrates that x and y amplitudes are monotonic, increasing
functions in the external excitation amplitude force F.

6.2 Effect of Damping Coefficient. For positive values of the
linear damping �, the amplitudes of x and y are monotonic de-
creasing functions. This parameter can be used to control the sys-
tem amplitude, as shown in Fig. 7�b�, where more increase of �
leads to saturation phenomena. This behavior is in a good agree-
ment with the response curves in Figs. 2�d�, 3�e�, and 4�d�.

6.3 Effect of Nonlinear Coefficients. Figures 7�c�–7�g� show
the effect of different nonlinear coefficients on the x and y ampli-
tudes, which is summarized in Table 1.

Both effects of parameters in the frequency response results
�Figs. 2–4� and the numerical solution results �Fig. 7� are in a
good agreement.

6.4 Effect of Parametric Excitation Amplitudes. Figures
8�a� and 8�e� illustrate that as f11 and f21 increase, the x and y
amplitudes increase, respectively, and more increase in f11 may
lead to saturation phenomena. The results are in agreement with
the frequency response curves in Figs. 3�a� and 3�b�, 2�a� and
2�b�, and 4�a� and 4�b�, respectively. Table 2 summarizes the re-
sults in Fig. 8.
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7 Conclusions
The nonlinear oscillations and dynamic response of a rigid rotor

in active magnetic bearings �AMBs� with time-varying stiffness
are investigated, and combined; simultaneous primary and princi-
pal parametric; and resonance condition has been considered. The
method of multiple scales is applied to determine the combined
resonance case and to study the system stability. The stability of
the system and the effect of different parameters on system be-
havior have been studied under combined resonance, applying the
frequency response equation method. They have been confirmed
numerically. The presented results are expected to be useful in the
design of rotor-AMB systems to suppress vibration. It may be
concluded that:

1. The system has a variety of interesting phenomena such as
multivalued solutions, jump, and softening and hardening
nonlinearities, which is in agreement with Refs. �19,20�.

2. The steady-state amplitudes in the horizontal and vertical
directions are monotonic decreasing functions in the natural
frequencies �1 and �2, respectively.

3. The steady-state amplitudes are monotonic increasing func-
tions in the external force amplitude F, but more increase
may lead to unstable behavior.

4. The steady-state amplitudes are monotonic decreasing func-
tions in the damping coefficient �, but more increase may
lead to saturation phenomena.

5. The steady-state amplitude in the horizontal direction is a

Fig. 2 Response curves of case 1: a1=0, a2Å0 at combined resonance condition. Basic case, physical coef-
ficients: F=0.5, f21=10.0, �=0.5, �2=3.2, �5=0.004, �6=0.3, and �2=0.1.
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monotonic increasing function in the nonlinear parameters
�3, �4, �2, �3, whereas it is a monotonic decreasing function
in the nonlinear parameters �2.

6. The steady-state amplitude in the vertical direction is a
monotonic increasing function in the nonlinear parameter
�5, whereas it is a monotonic decreasing function in the
nonlinear parameters �3, �2, �3, �6.

7. The steady-state amplitude for the first mode is a monotonic
increasing function in the parametric excitation amplitudes
f11 and f13, whereas it is a monotonic decreasing function in
f12 and f14. Further increase may lead to saturation phenom-
ena.

8. For the second mode, the steady-state amplitude is a mono-
tonic increasing function in the parametric excitation ampli-
tudes f21, f24, f25, whereas it is a monotonic decreasing func-
tion in f22, f23, and f26.

9. The effect of parametric excitation is varied according to the
type of resonance condition. For example, when simulta-

neous primary resonance is considered �20�, the parametric
excitation affects the shape of chaotic motion. Whereas, a
combination resonance condition is sensitive to the magni-
tude of parametric excitation, which is in agreement with
Refs. �15,16�.

10. Stability and controllability in rotor-AMB systems with
time-varying stiffness are better than those in the rotor-
AMB systems with the constant stiffness �29,30�.

Appendix
The coefficients of Eqs. �29�–�32�

m1 =
�5

8�1
�2�2 − �1�, m2 =

1

8�1
��3 + �6�2�2�1 − �2��,

m3 =
3

8�1
��2 + �6�1

2�

Fig. 3 Response curves of case 2: a1Å0, a2=0 at combined resonance condition. Basic case, physical coef-
ficients: f11=5.0, �1=3.2, and �2=0.3, other coefficients have same values as those in Fig. 2„a….
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Fig. 4 Response curves of case 3: a1Å0, a2Å0 at combined resonance condition. Basic case, physical coef-
ficients: f21=2.0, �2=�1=3.2, and �2=0.1, other coefficients have same values as those in Fig. 2„a….

Fig. 5 Nonresonant time response solution, physical coefficients are: F=0.5, �=0.5, �=1.9, �=3.9, �1=3.2,
�2=3.6, f1i, i=1,2,3,4 are 0.1, 0.1, 0.3, 0.4; f2i, i=1,2, . . . ,6 are 0.1, 0.1, 0.15, 0.2, 0.25, 0.35; �i, i=2,3, . . . ,7 are
0.3, 0.1, 0.01, 0.004, 0.3, 0.02, and �i, i=2,3,5,6,7 are 0.1, 0.1, 0.01, 0.05, 0.01, respectively
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m4 =
1

4�1
��3 + �6�2

2�, f1 =
f11

2�1
, F1 =

F

2�1

n1 =
�5

8�2
�2�1 − �2�, n2 =

1

8�2
��3 + �6�1�2�2 − �1�� ,

n3 =
3

8�2
��2 + �6�2

2�

Fig. 6 Combined resonance solution: �=�2=�1 and �=2�1

Fig. 7 Numerical solution under various values of the system parameters at combined resonance condition
„dashed line is the x amplitude, solid line is the y amplitude…
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n4 =
1

4�2
��3 + �6�1

2�, f2 =
f21

2�2
, F2 =

F

2�2

The coefficients of Eq. �35�

Table 1 Effect of nonlinear coefficients. MI and MD denote that
the amplitude is monotonic increasing, decreasing function in
the nonlinear term, respectively.

Nonlinear parameter
x amplitude
�dashed line�

y amplitude
�solid line�

�2, Fig. 7�c� MD Trivial effect
�3=�2=�3, Fig. 7�d� MI MD
�4, Fig. 7�e� MI Trivial effect
�5, Fig. 7�f� Trivial effect MI
�6, Fig. 7�g� Trivial effect MD

Fig. 8 Effect of parametric excitation amplitudes at combined resonance case

Table 2 Effect of parametric excitation amplitudes

Parametric excitation x amplitude y amplitude

f12; f13; Figs. 8�a� and 8�c� MI Trivial effect
f12, f14; Figs. 8�b� and 8�d� MD Trivial effect
f21, f24, f25; Figs. 8�e�, 8�h�, and 8�i� Trivial effect MI
f22, f23, f26; Figs. 8�f�, 8�g�, and 8�j� Trivial effect MD
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s1 = �m3
2 +

9

64
�5

2�, s2 = �2m3�1 −
3

8
��5 + �2m3m4 +

3

16
�5

2�a2
2�

s3 = ��1
2 +

1

4
�2 − f1

2 + �m4
2 − m1

2 − m2
2 +

1

16
�5

2�a2
4

+ �2m4�1 + 2f1m2 − ��5�a2
2�

s4 = �− 2f1F1 + 2F1m2a2
2�

The coefficients of Eq. �36�

s5 = �n3
2 +

9

64
�5

2�, s6 = �2n3�2 −
3

8
��5 + �2n3n4 +

3

16
�5

2�a1
2�

s7 = ��2
2 +

1

4
�2 − f2

2 + �n4
2 − n1

2 − n2
2 +

1

16
�5

2�a1
4

+ �2n4�2 − 2f2n2 − ��5�a1
2�, s8 = �− 2F2n1a1

2�

The coefficients of Eqs. �39�–�42�


1 = ��1 −
f11

2�1
�, 
2 = �1

2
� +

F

2�1q1
� ,


3 = ��2 −
f21

2�2
�, 
4 = �1

2
� +

F

2�2p1
�

The coefficients of Eq. �43�

l1 = �
2 + 
4�, l2 = �
1
2 − 
3

2 + 
2
4 −
1

4
�2�

l3 = �
1
2�1

2
� + 
4� + 
3

2�1

2
� − 
2� −

1

4
�2�
2 + 
4��

l4 =
1

2
��
3

2
2 + 
1
2
4� −

1

4
�2
2
4 − 
1

2
3
2
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Response of a Helix Made of a
Fractional Viscoelastic Material
Under investigation is the effective response of a helical strand (helix) made of a vis-
coelastic material governed by a constitutive relation with fractional-order (i.e., not
integer-order) derivatives. The relation involves a 5-parameter model, which is well
known to represent a real response much better than the conventional, integer-order
models with the same number of parameters. We employ the correspondence principle of
viscoelasticity to pass from the level of the strand’s material to that of an effective,
coupled axial-torsional response of the helix. The resulting fractional-order differential
equation is more complex (i.e., it involves higher derivatives) than the constitutive equa-
tion governing the material per se. Also, the use of a fractional-order model results in
more complexity of the helix’ effective viscoelastic response than does an integer-order
model with the same number of parameters. It is shown that shear deformations are more
important than dilatational deformations. Lastly, a standard relaxation test is studied and
an analytic solution is derived. �DOI: 10.1115/1.2745401�

1 Introduction
The term helix means a single helical strand or a bundle of such

strands. In the latter case, such as a wire rope, there is a straight
strand at the core, surrounded by several outer helical strands, Fig.
1. In the case of a bundle without the core strand, the outer helical
strands are assumed to not collapse, and to not interact on their
contact surfaces. Effectively, the loads they carry add up as in a
parallel system.

The effective constitutive equations of the helix involve cou-
pling of axial with torsional responses �e.g. �1��

� = C1� + C2�

� = C3� + C4� �1�

Here � is the axial stress and � is the couple-stress �moment per
unit area�, while � and � are the axial strain and angle of twist per
unit length respectively. C1¯C4 are the constitutive coefficients
dependent on the material properties and the 3D geometry of the
helix. They have been explicitly, and to a good approximation,
derived analytically under certain assumptions in �2�.

As is well known, the differential equation governing a conven-
tional viscoelastic material �i being an integer, e.g. �3–5�� is

� + �
i=1

I

Pi
di�

dti = E0�� + �
j=1

J

Qj
dj�

dtj � �2�

A more effective fit to experimental data with n and m being
significantly smaller than any given I and J is offered by replacing
the integer-order derivatives with fractional-order derivatives �6�

� + �
i=1

n

P�i
D�i� = E0�� + �

j=1

m

Q�j
D�j�� �3�

Let us note here that the model of type �3�—henceforth, called a
fractional viscoelastic material—is more consistent with the mo-
lecular theories and experiments �4�. In �2� and �3�, � and � stand
for stress and strain, while P and Q are the relaxation and retar-
dation times, respectively, and E0 is the relaxed magnitude of
elastic modulus �prolonged modulus of elasticity�. Also, �i�i
=1,2 , . . . ,n� and � j�j=1,2 , . . . ,m� are the fractional parameters

�0��i ,� j �1� and D�i� and D� j� are the fractional-order deriva-
tives defined as �see e.g. �7��

D�f�t� =
��

�t� f�t� =
1

��1 − ��
�

�t�0

t
f���

�t − ���d� 0 � � � 1 �4�

where � is the gamma function.
The integrodifferential operator in �4� is of a Caputo-type �6�. It

has a fading memory because of the convolution with t−�. Here, if
�=1 we say that the system has a perfect memory and if �=0
there is no memory �8�. For any value 0���1 the system has
partial memory. The physical interpretation of this operator is in-
teresting: Let us consider 	 as a displacement of a simple rod
under uniaxial loading. When �=0, D�	=	 and when �=1,

D�	= 	̇. Thus, by multiplying a constant parameter by D�	, de-
pending on the value of �, one may obtain either the elastic force
�spring model� or the damping force �dashpot model�. For any 0
���1, the derived force is a combination of dashpot and spring
models. In other words, the range 0���1 is a spectrum of a
continuous change from spring to dashpot model.

Due to this property, the fractional model �3� is far more accu-
rate than the model �2�. For a wide range of macroscopically
homogenous viscoelastic materials including say, elastomers, ther-
moplastics, and thermostiffening materials, the constitutive equa-
tion between stress and strain can be modeled only by using terms
up to the first derivatives on the LHS and RHS of Eq. �3�; this is
called a 5-parameter model. However, if one wants to model the
same material with Eq. �2�, many higher integer-order derivative
terms on the LHS and RHS must be taken into account in order to
achieve a comparable accuracy �9,10�.

An interesting mathematical property of the fractional deriva-
tive is its Laplace transform �7�

L	D�f�t�
 = s�L	f�t�
 l − 1 � � � l l � N �5�

where

L	f�t�
 =�
−





e−stf�t�dt �6�

The Caputo definition of a fractional-order derivative has been
used in Eq. �4� because, in contradistinction to the Riemann-
Liouville definition, it yields zero for a constant. This is why the
initial conditions do not appear in Eq. �5�.
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2 Fractional-Order Equations Governing the Effective
Helix’ Response

Viscoelastic responses of a helix based on integer-order deriva-
tives were studied in �2,3�. In this note we turn our attention to
time dependent response of a helix by using the fractional ap-
proach. Considering the viscoelastic fractional-order differential
equation �3� as a dilatational response of a material, its Laplace
transform becomes

�7�
where the bar sign over � and � indicates the parameter in the
Laplace transformed domain. P�s� and Q�s� are the coefficients of
�̄�s� and �̄�s� for the assumed viscoelastic model, and unlike their
counterparts in integer-order derivatives, they are no longer poly-
nomials. Instead, they are expressions dependent on the fractional-
order power of Laplace parameter. By recourse to the correspon-
dence principle of viscoelasticity, and following a similar
approach as that in the case of Eq. �2� in �2�, it can be shown that
one can recover Hooke’s law in the transformed domain from Eq.
�7� with the subsequent substitution for the transformed bulk
modulus

3sK̄ =
Q�s�
P�s�

=

�1 + �
i=1

n

P�i
s�i�

E0�1 + �
j=1

m

Q�j
s�j� �8�

An analogous formula can be derived for the shear response of
isotropic materials. Unlike the case of integer-order derivatives,
there is no constraint upon initial conditions of stress and strain in
the bulk and shear behavior.

Previous experimental tests �10� indicate that most viscoelastic
materials can be modeled sufficiently accurately by using only the
first fractional derivative terms in each series of Eq. �3�: n=m
=1. We consider such a model for the bulk as well as the shear
response of the fractional viscoelastic material making up the he-
lical strand

��t� + PD���t� = Q0��t� + QD���t� �9�

S�t� + pD�S�t� = q0��t� + QD���t� �10�

In the above, as discussed in detail in �8�, the fractional-order
derivatives on bulk stress �or shear stress� and bulk strain �or
shear strain� are assumed to be the same. This reduces the number
of parameters in the model from five to four. Considering the
dilatational behavior, the Laplace transform of �9� is simply

�11�
so that the transformed modulus will be

3sK̄ =
Q�s�
P�s�

=
E0 + Qs�

1 + Ps� �12�

Analogous equations apply to the shear response of the helix. By
using all these equations in the formulas �16�–�19� of �2�, exten-
sively rearranging the terms and applying the inverse Laplace
transform to the fractional-order terms, the differential equations
of the viscoelastic helix become

��� = ��� + ��� �13�

���� = ���� + ���� �14�
The operators in �13� are

�� = �c0 + c1D� + c2D� + c3D�+� + c4D2� + c5D2� + c6D2�+�

+ c7D�+2� + c8D2�+2� + c9D3� + c10D
3�+� + c11D

3�+2��
�15�

�� = �h0 + h1D� + h2D� + h3D�+� + h4D2� + h5D2� + h6D2�+�

+ h7D�+2� + h8D2�+2� + h9D3� + h10D
3�+� + h11D

3�+2��
�16�

�� = �l0 + l1D� + l2D� + l3D�+� + l4D2� + l5D2� + l6D2�+�

+ l7D�+2� + l8D2�+2� + l9D3� + l10D
3�+� + l11D

3�+2��
�17�

The operators in �14� are very similar in form �and, therefore, not
reproduced for the sake of brevity� but, certainly, have a different
set of coefficients.

Several observations are in order here:

�i� Setting �=�=1 in �9� and �10� converts the fractional
model to an integer-order model of Zener type. The opera-
tors �15�–�17� reduce to

�� = �g0 + g1D1 + g2D2 + g3D3 + g4D4 + g5D5� �18�

�� = �e0 + e1D1 + e2D2 + e3D3 + e4D4 + e5D5� �19�

�� = �b0 + b1D1 + b2D2 + b3D3 + b4D4 + b5D5� �20�
which coincides with the results obtained in �2�.

�ii� The operators �15�–�17� are asymmetric with respect to �
and �; there are some extra terms that involve higher order
derivatives of � �which was the fractional exponent for the
shear response at the material level�. This indicates that in
the constitutive equations of viscoelastic helix, the effect
of shear modulus is more pronounced than that of the bulk
modulus. Such an effect does not arise in the integer-order
models for the helix; operators in �18�–�20� involve six
terms each.

�iii� Another interesting feature is that, even though the chosen
fractional models at the material level are such that 0��,
��1, the order of the fractional derivatives in the helix is
definitely higher and can be, in general, greater than 1.
Note that in real materials 0��, ��1, as exemplified by
�, ��0.5 for elastomers �7,8�.

We postulate that the particular arrangement of the helix geom-
etry through the bending constraint of 3D helical segments or
other types of constraints such as the compatibility of axial-
torsional deformations, explain the observations �ii� and �iii�.

3 Relaxation Response of the Helix
In general, the advantage of having the governing differential

equations of a viscoelastic helix �either integer or fractional type�
is that one can simply study the macroscopic behavior of helices,
for instance damped vibrations of such helical elements �11–14�,
or macroscopic creep/relaxation phenomena which we examine

Fig. 1 A system of helical strands, showing a coupling of axial
with torsional responses
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here. The applications can range from cables used in suspension
bridges or in prestressed concrete girders, to biological tissues
which involve helical geometries.

Let us now focus on the governing equations �13� and �14� and
the operators �15�–�18� to find the relaxation response of the helix.
Since in the relaxation test the strains are constant with time, their
fractional-order, Caputo-type derivatives become zero. Henceforth
the operators �16� and �17� reduce to constants as

�� = h0 �21a�

�� = l0 �21b�

while �15� remains unchanged. With this simplification, one can
take the Laplace transform of Eq. �15� to find

�̄�s� =
h0� + l0�

s��s�
�22�

where ��s� is an algebraic operator

��s� = c0 + c1s� + c2s� + c3s�+� + c4s2� + c5s2� + c6s2�+� + c7s�+2�

+ c8s2�+2� + c9s3� + c10s
3�+� + c11s

3�+2� �23�
The inverse transform of Eq. �22� exists, is real, continuous and

causal, see the Appendix. Thus, the time dependent stress is given
by �A8�. In that equation, m is the smallest common denominator
of the exponents of s in ��s�. Note that the macroscopic relax-
ation response contains three terms. The first term is a constant
independent of time; it is indeed the smallest possible value of
��t� �because the other two terms vanish as t approaches infinity�.
Note here that the structure of a 5-parameter fractional model
�regardless of its fading memory� is similar to the integer-order
Zener model. Hence, there is a spring �even though it might be
weaker in the fractional case as opposed to integer case� parallel
to the dashpot that prevents the total stress from approaching zero
as time goes to infinity. Furthermore, the dashpot itself has a par-
tial memory and can also behave like a spring. The second term is
an integral that decreases with increasing time, while the last term
is a sum of exponentially decaying sinusoidal functions. A similar
expression can be found for the time dependent couple-stress ��t�
in relaxation.

In creep phenomena, the stress remains constant and strains
increase in time. Therefore, �� reduces to c0 while �� and ��
remain unchanged as a sum of fractional derivative operators. In
this case, one cannot use either of Eqs. �13� or �14� to find the
time dependent strains, but the coupled systems of Eqs. �13� and
�14� have to be tackled. This again is possible analytically by
making use of the Laplace transform and the reside theorem given
in the Appendix. It turns out that, also in the creep test, there is a
constant term in the solution, indicating that strains have an upper
bound as time goes to infinity. As the resulting expressions are
very lengthy, we do not show them.

4 Conclusions
The effective �along-the-axis� response of helices made of vis-

coelastic materials is far from trivial. In essence, the constitutive
equations of helices are more complex than those of their constitu-
ents. The effect was brought out earlier for materials with integer-
order derivatives �2� and, as shown here, is even stronger in the
case of fractional-order derivatives. Overall, the effect is due to
the 3D geometry of the helix.

More specifically, the influence of shear modulus of the frac-
tional viscoelastic material is more complicated and dominant
than that of its bulk modulus on the effective response of the
helix. This observation is valid only when considering fractional-
order derivatives for the helix material. In the special case of
integer-order derivatives, one recovers the conventional differen-
tial equations. Note here that one cannot obtain the equations of

the helix made of a fractional viscoelastic material by a direct
generalization of those of the helix made of a conventional vis-
coelastic material.

The fractional-order equations governing the effective helix’
response are employed to derive the explicit analytic solution in
the standard relaxation test. In summary, the results of this paper
provide guidance on equations and responses of 3D chiral frac-
tional viscoelastic materials, similar to those on thermoelastic he-
lices �15� which offered guidance on 3D chiral thermoelastic ma-
terials.
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Appendix
One can convert the fractional expression ��s� to a polynomial

of integer order by

��s� = �
J=1

bjs
j/m = �

J=1

bju
j = X�u� �A1�

where u=s1/m and m is the smallest common denominator of the
fractional exponents of s in ��s�. Clearly, some of the coefficients
bj are zero, while any nonzero bj corresponds to the coefficient of
s in ��s� whose exponent becomes equal to j /m. The inverse
transform of �̄�s� exists and is real, continuous and causal when
�i� �̄�s� is analytic for Re�s�
0, �ii� �̄�s� is real for s real and
positive, �iii� �̄�s� is of order s−�, where �
1, for �s� large in the
right half of the s-plane �13�. One can simply show that �̄�s�
satisfies all these three conditions. The inverse Laplace transform
of �22� is then

L−1��̄�s�� =
1

2�i�
�−i


�+i


est��̄�s��ds �A2�

which can be evaluated by extending the line integral into a closed
contour integration as in Fig. 2.

Next, we recall the residue theorem, which states that the inte-
gral along any closed contour, divided by 2�i, is equal to the sum
of the residues of poles of the integrand within that contour. In
Fig. 2, the contour is divided into six segments with arrows which
indicate the direction of integration. Note that, since the branch
cut of s1/m is along the negative real axis of the s plane, segments
3–5 are required here. Using the residue theorem, we can write

Fig. 2 Integration contour in the s plane, after †7‡
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1

2�i�1

est��̄�s��ds = −
1

2�i�k=2

6 �
k

est��̄�s��ds + �
j

bj �A3�

Equation �A2� is the left-hand side of Eq. �A3� when its limits are
extended infinitely in the negative and positive imaginary direc-
tions of the s plane. To ensure the continuity of the closed contour,
the radii of segments 2 and 6 are increased infinitely and conse-
quently segments 3 and 5 are stretched to infinity on the negative
real axis. It can be shown that the integrals along contours 2 and
6 are zero when the radius approaches infinity. The contour inte-
gral along the segment 4 can be obtained by using the following
lemma �MacRobert �14��:

“If lims→a
�s−a�f�s��=k, where k is a constant, then
lims→a
�f�s�ds�= i��2−�1�k, the integral being taken for s→a and
r→0 around an arc from �1 to �2 of the circle �s−a�=r.”

It follows that

lim
s→0


s�̄�s�� =
h0� + l0�

c0
�A4�

so that, the contour integration along segment 4 becomes

�
4

�̄�s�ds = − 2�i�h0� + l0�

c0
� �A5�

where ��2−�1�=−2� by convention. One can also show

�
3

est��̄�s��ds +�
5

est��̄�s��ds = − 2i Im�
0




e−rt��̄�re−i�s��dr

�A6�

Using a conventional technique, the residues are then calculated
as

bj = lim
s→�j

m

�s − � j

m���̄�s�est�� �A7�

Here � j refers to the jth root of the integer polynomial X�u�. In
view of Eqs. �A1� and �22�, the roots of X�u� correspond to the
poles of �̄�s� involving fractional exponents. Note that s=0 is not
included within the closed contour of Fig. 2 and, therefore, its
residue is not required.

Finally, by adding �A5�–�A7�, Eq. �A3� becomes

��t� =
h0� + l0�

c0
+

1

�
Im��

0




�̄�re−i��e−rtdr� + �h0� + l0���
j

�s

− � j
m�

e�j
mt

� j
m��� j

m�
�A8�

The summation in the last term is over the residues that are in-
cluded within the closed contour in Fig. 2. The poles of Eq. �22�
� j �those that make ��s�=0� were found in the s1/m plane. As the
Laplace transform is performed in the s plane, the poles � j should
be transformed into � j

m so as to be on the s plane. That transfor-
mation, however, causes some of the original poles to be mapped
onto Riemann surfaces not included within the closed contour of
integration in the s plane. According to the residue theorem, the
residues of such poles do not contribute to the solution. Thus, the
summation over the index j in Eq. �A8� applies to those poles only
that remain in the closed contour’s plane after the transformation
� j

m. The reside theorem in conjunction with fractional-order de-
rivatives has been used in �7� in a slightly different way.
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We use the compact harmonic general solutions of transversely isotropic piezother-
moelastic materials to construct the three-dimensional Green’s function of a steady point
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1 Introduction
Green’s functions or fundamental solutions play an important

role in both applied and theoretical studies on the physics of sol-
ids. They are a basic building block of a lot of further works. For
example, Green’s functions can be used to construct many ana-
lytical solutions of practical problems when boundary conditions
are imposed. They are essential in the boundary element method
as well as the study of cracks, defects, and inclusions.

For purely elastic solids, Green’s functions had been well in-
vestigated and a great deal of works can be found in the literature.
For piezoelectric material with electromechanical coupling,
Green’s functions have also received much attention. For aniso-
tropic piezoelectric material, Deeg �1�, Wang �2�, Benveniste �3�,
Chen �4�, and Chen and Lin �5� expressed the Green’s function of
infinite material in the form of integral representation through the
use of the transform techniques. Pan �6� derived the two-
dimensional Green’s functions of infinite, semi-infinite, and two-
phase material by the complex function method, and Gao and Fan
�7� also gave the two-dimensional Green’s functions of semi-
infinite material. Pan and Tonon �8� and Pan and Yuan �9� derived
the solutions for the Green’s functions of infinite and two-phase
material.

With regards to the special case of transversely isotropic piezo-
electric material, Sosa and Castro �10�, Lee and Jiang �11�, and
Ding et al. �12–14� studied the two-dimensional Green’s functions
of infinite, semi-infinite, and two-phase material. Wang and Chen
�15� and Wang and Zheng �16� obtained the Green’s function for
point loads acted on the surface of semi-infinite piezoelectric ma-
terial. Dunn �17� gave an explicit solution for the Green’ function
of infinite piezoelectric material by taking Radon transform, coor-
dinate transformation, and evaluation of residues in sequence.
Later, Dunn and Wienecke �18,19� and Ding et al. �20,21� inde-
pendently obtained the concise Green’s functions of infinite and
semi-infinite piezoelectric material in terms of elementary func-
tions, which were employed to study the inclusion problem �22�.
The thermal effects are not considered in all the above works.
Piezoelectric ceramics and piezoelectric polymers, which are ex-
tensively utilized in smart structures and intelligent systems, all
belong to pyroelectric materials. Rao and Sunar �23� pointed out
that temperature variation in the piezoelectric material could af-

fect the overall performance of a distributed control system.
Therefore, in-depth investigation on electro-thermo-mechanical
coupling behavior is significant.

Qin �24–27� further derived the two-dimensional Green’s func-
tions of anisotropic piezothermoelastic material with holes of vari-
ous shapes. Chen �28� derived a compact three-dimensional gen-
eral solution for transversely isotropic piezothermoelastic
materials. In this general solution, all components of the piezo-
thermoelastic field are expressed by four harmonic functions.
Based on this general solution, Chen et al. �29� obtained the
Green’s function of transversely isotropic piezothermoelastic ma-
terial with a penny-shaped crack.

In this paper, three-dimensional Green’s function for a steady
point heat source on the surface of a semi-infinite transversely
isotropic piezothermoelastic material z�0 is investigated. For
completeness, the general solution of Chen �28� is described in
Sec. 2. In Sec. 3, four new suitable harmonic functions are con-
structed in the form of elementary functions with undetermined
constants by trial-and-error. The corresponding piezothermoelastic
field can be obtained by substituting these functions into the gen-
eral solution, and the undetermined constants can be obtained by
the boundary conditions on the surface z=0 and the equilibrium
conditions for a cylinder of 0�z�a and 0�r�b, where a and b
are arbitrary but should include the source point. Numerical ex-
amples are presented in Sec. 4. All stress, electric displacement
components, and temperature increment are shown graphically by
contours. Finally, the paper is concluded in Sec. 5.

2 General Solutions for Transversely Isotropic Piezo-
thermoelastic Material

When the xy plane is parallel to the plane of isotropy in Carte-
sian coordinates �x ,y ,z�, the constitutive relations of transversely
isotropic piezothermoelastic materials are

�x = c11
�u

�x
+ c12

�v
�y

+ c13
�w

�z
+ e31

��

�z
− �11�

�y = c12
�u

�x
+ c11

�v
�y

+ c13
�w

�z
+ e31

��

�z
− �11�

�z = c13� �u

�x
+

�v
�y
� + c33

�w

�z
+ e33

��

�z
− �33�

�yz = c44� �v
�z

+
�w

�y
� + e15

��

�y
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�zx = c44� �u

�z
+

�w

�x
� + e15

��

�x

�xy = c66� �u

�y
+

�v
�x
� �1a�

Dx = e15� �u

�z
+

�w

�x
� − �11

��

�x

Dy = e15� �v
�z

+
�w

�y
� − �11

��

�y

Dz = e31� �u

�x
+

�v
�y
� + e33

�w

�z
− �33

��

�z
+ p3� �1b�

where u, v, and w are components of the mechanical displacement
in x, y, and z directions, respectively; �ij and Di are the compo-
nents of stress and electric displacement, respectively; � and � are
electric potential and temperature increment, respectively; cij, eij,
�ij, �ii, and p3 are elastic, piezoelectric, dielectric, thermal mod-
ules, and pyroelectric constants, respectively. The relation c66
= �c11−c12� /2 holds for materials with transverse isotropy.

In the absence of body forces and free charges, the mechanical,
electric and heat equilibrium equations are

��x

�x
+

��xy

�y
+

��zx

�z
= 0

��xy

�x
+

��y

�y
+

��yz

�z
= 0

��zx

�x
+

��yz

�y
+

��z

�z
= 0 �2a�

�Dx

�x
+

�Dy

�y
+

�Dz

�z
= 0 �2b�

	11� �2�

�x2 +
�2�

�y2� + 	33
�2�

�2z
= 0 �2c�

where 	ii �i=1,3� are coefficients of heat conduction.
Chen �28� derived a compact general solution to Eqs. �1� and

�2� as follows:

U = 
�i�0 + �
j=1

4

� j�
wm = �

j=1

4

sjkmj
�� j

�zj

� = k34
�2�4

�z4
2 �3a�

�1 = 2�
j=1

4

�c66 − �1jsj
2�

�2� j

�zj
2 = − 2�

j=1

4

�c66 − �1jsj
2�
� j

�2 = 2c66

2�i�0 + �

j=1

4

� j� ,

�zm = �
j=1

4

�mj
�2� j

�zj
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j=1

4

�mj
� j
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�s0�mi
��0

�z0
+ �

j=1

4

sj�mj
�� j

�zj
� �m = 1,2� �3b�

where the following notations for all components both in Carte-
sian coordinates �x ,y ,z� and cylindrical coordinates �r ,� ,z� are
introduced:

U = u + iv = ei��ur + iu�� w1 = w w2 = � �4a�

�1 = �x + �y = �r + ��

�2 = �x − �y + 2i�xy = e2i���r − �� + 2i�r��

�z1 = �xz + i�yz = ei���zr + i��z� �z1 = �z

�z2 = Dx + iDy = ei��Dr + iD�� �z2 = Dz �4b�

In addition, zj =sjz �j=0,1 ,2 ,3 ,4�, s0=�c66 /c44, s4=�	11 /	33,
and sj �j=1,2 ,3� satisfying Re�sj��0 are the three eigenvalues of
the sixth degree polynomial listed in Appendix A. Functions
� j �j=0,1 ,2 ,3 ,4� satisfy, respectively, the following harmonic
equations:

�
 +
�2

�zj
2�� j = 0 �j = 0,1,2,3,4� �5�

where


 =
�2

�x2 +
�2

�y2 in coordinates �x,y,z� �6a�


 =
�2

�r2 +
�

r�r
+

�2

r2��2 in coordinates �r,�,z� �6b�

In addition,

k1j = �1j/sj k2j = �2j/sj k3j = �3j �7a�

�1j = c44�1 + k1j� + e15k2j = − c13 + �c33k1j + e33k2j�sj
2 − �33k3j

= �c11 − �c13k1j + e31k2j�sj
2 + �11k3j�/sj

2
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2 + p3k3j

�7b�

�1 = c44 �2 = e15 
 =
�

�x
+ i

�

�y
�7c�

where �mj �m=1,2 ,3; j=1,2 ,3 ,4� are constants listed in Appen-
dix A. It should be noted that the general solutions given in Eq.
�3� are only valid for the case when the eigenvalues sj �j
=1,2 ,3 ,4� are distinct.

For the nontorsional axisymmetric problem, �0=0 and � j �j
=1,2 ,3 ,4� are independent of �, so that u�=0, ��z=�r�=0, and
D�=0. The general solution in cylindrical coordinates �r ,� ,z� can
be simplified to the following form:

ur = �
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4
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�2� j
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2
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�� = 2c66�
j=1

4
1

r

�� j

�r
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j=1

4

�sj
2�1j − 2c66�

�2� j

�zj
2

�z = �
j=1

4

�1j
�2� j

�zj
2
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j=1

4

sj�1j
�2� j
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�8b�
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j=1

4

�2j
�2� j

�zj
2

Dr = �
j=1

4

sj�2j
�2� j

�r�zj
�8c�

For the torsional axisymmetric problem, � j =0 �j=1,2 ,3 ,4�
and �0 is independent of �, so that ur=uz=0, �=0, �=0, �r
=��=�z=�rz=0, and Dr=Dz=0. The general solution can be sim-
plified to the following form:

u� = −
��0

�r

�r� = 2c66�1

2

�2

�z0
2 +

�2

�r2��0 �9a�

��z = s0c44
�2�0

�r�z0

D� = s0e15
�2�0

�r�z0
�9b�

All of the above general solutions �3�, �8�, and �9� will be used in
Sec. 3 and Appendix B.

3 A Point Heat Source on the Surface of a Semi-
Infinite Transversely Isotropic Piezothermoelastic Mate-
rial

Consider a semi-infinite transversely isotropic piezothermoelas-
tic material z�0 whose isotropic plane is perpendicular to the z
axis �Fig. 1�. A point heat source H is applied at the origin of the
cylindrical coordinate �r ,� ,z� and the surface �z=0� is free and
electro-thermally insolated. Based on the general solution �8�, the
coupled field in the semi-infinite piezothermoelastic material is

derived in this section. This is a nontorsional axisymmetric prob-
lem. The boundary conditions on the surface �z=0� are in the form
of

�z = �zr = 0 Dz = 0 ��/�z = 0 �10�
Introducing the following harmonic functions:

�0 = 0 � j = A j�zj ln Rj
* − Rj� �j = 1,2,3,4� �11�

where A j �j=1,2 ,3 ,4� are constants to be determined, and

Rj
*�r,z� = Rj�r,z� + zj Rj�r,z� = �r2 + zj

2 �12�

Substitution of Eq. �11� into Eq. �8� yields
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* wm = �

j=1

4
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�2jA j

1

Rj
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sj�2jA j
r

RjRj
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Substitution of Eqs. �13a� into Eq. �10� give

�
j=1

4

�mjA j = 0 �m = 1,2� �14�

�
j=1

4

sj�1jA j = 0 �15�

and �� /�z=0 is satisfied automatically.
When the mechanical, electric and thermal equilibriums for a

cylinder of 0�z�a and 0�r�b are considered �Fig. 1�, where a
and b are arbitrary, and three additional equations can be obtained,

	
0

2�	
0

b

�z�r,�,a�rdrd� + 2�b	
0

a

�zr�b,�,z�dz = 0 �16a�

	
0

2�	
0

b
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0

a
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− 	33	
0

2�	
0

b
��

�z
�r,�,a�rdrd� − 2�b	11	

0

a
��

�r
�b,�,z�dz = H

�16c�

where 	11 and 	33 are coefficients of heat conduction along r and
z axes, respectively.

Some useful integrals are listed below:

Fig. 1 A point heat source H on the surface of a semi-infinite
piezothermoelastic material
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	 r

RjRj
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r

Rj
* �17a�
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rdr = − s4k34A4	 z4
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z4
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�17b�
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dz = − k34A4	 r
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k34

s4
A4

r

R4R4
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Substituting Eqs. �13b� and �13c� into Eqs. �16a� and �16b�
using integral �17a�, one can obtain

�
j=1

4

�mjA jI1 = 0 �m = 1,2� �18�

where

I1 = �Rj�r,a��r=0
r=b − 
 b2

Rj
*�b,z��z=0

z=a

= b �19�

By virtue of Eq. �19�, Eq. �18� degenerates to Eq. �14�.
Substituting Eq. �13a� into Eq. �16c� by using s4=�	11 /	33 and

integrals �17b� and �17c�, one can obtain

− A4I2 =
H

2�k34
�	11	33

�20�

where

I2 = 
 s4a

R4�r,a��r=0

r=b

+ 
 b2

R4�b,z�R4
*�b,z��z=0

z=a

= − 1 �21�

A4 can be determined by Eqs. �20� and �21� as follows:

A4 =
H

2�k34
�	11	33

�22�

Thus, the coupled field in the semi-infinite transversely isotro-
pic piezothermoelastic material is determined by Eqs. �13a�, �14�–
�16�, �17a�, and �18�–�22�.

Consider the problems of point charge Q, concentrated forces
Px, Py, Pz and concentrated moments Mx, My, Mz in the x, y, z
direction, respectively, on the surface of a semi-infinite trans-
versely isotropic piezothermoelastic material. One can find that
the foundational Eqs. �1a� and �2a� are single-direction coupling,
i.e., the thermal loading can change electroelastic fields, while on
the contrary, the mechanical or electric loadings cannot change the
thermal field ��=0�, so the corresponding solutions under electro-
mechanical loadings degenerate to those when thermal effects are
not considered, such as Ding et al. �30�. The corresponding solu-
tions for all of the above cases are listed in Appendix B.

4 Numerical Results
The contours of temperature increment and all stress and elec-

tric displacement components in a semi-infinite transversely iso-
tropic piezothermoelastic material induced by a point heat source
H on the surface are evaluated numerically and plotted in Figs.
2–8. The material properties listed in Table 1 are taken from cad-
mium selenide �31�.

In additions, the following nondimensional components are
used in the Figures:

� =
�

T0
�k =

�i

c33�rT0
�kl =

�ij

c33�rT0
Dk =

Di

�rT0
�c33�33

� =
r

r1
� =

z

r1
�i, j = r,�,z;k,l = �,�,�� �23�

where r1 is a nonzero dimension, �r and T0 are the thermal ex-
pansion coefficient and reference temperature, respectively.

In this case, Eq. �22� should be rewritten in following nondi-
mensional form:

A4 =
�

2�s4k34
�24�

where � is a nondimensional point heat source as follows:

� =
H

r1T0	33
�25�

Here let �=1.

Fig. 2 Contour of nondimensional temperature increment �
Ã102 under point heat source �=1 acted at the origin

Fig. 3 Contour of nondimensional stress ��Ã102 under point
heat source �=1 acted at the origin
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On the basis of the contours plotted above, one can find all
components are singular at origin at which the point heat source is
located. In addition, following conclusions can be drawn:

�1� Figure 2 shows that the contour of temperature increment
���� is a normal circle. This is because the heat conduction
coefficients 	11 and 	33 along the r and z axes, respectively,
are equal for cadmium selenide.

�2� Figures 3 and 4 show that stresses ����z� and ������ are all
negative in semi-infinite piezothermoelastic material.

�3� Figures 5 and 6 show that there are zero common tangents
for stresses ����z� and �zr�����, which are negative upon the
zero common tangents and positive below them. One can
also find that they tend to zero near the surface �=0 and
satisfy the boundary condition.

�4� Figure 7 shows that there is a zero common tangent for

electric displacement D��Dr�, which is positive upon the
zero common tangent and negative below it. Figure 8
shows that electric displacement D��Dz� is all negative in
the semi-infinite piezothermoelastic material. It is noted
that although the expression in Eq. �13c� for electric dis-
placements D��Dr� and D��Dz� are similar to the expression
in �13b� for stresses �zr����� and ����z�, respectively, their
distributions in Figs. 5–8 are much different.

5 Conclusions
By virtue of the compact general solution of Chen �28�, four

harmonic functions � j �j=1,2 ,3 ,4� in Eq. �11� are constructed
and the corresponding coupled field for a point heat source acted
on the surface of a semi-infinite transversely isotropic piezother-
moelastic material is derived. Because the obtained solution is in

Fig. 4 Contour of nondimensional stress ��Ã102 under point
heat source �=1 acted at the origin

Fig. 5 Contour of nondimensional stress ��Ã102 under point
heat source �=1 acted at the origin

Fig. 6 Contour of nondimensional stress ���Ã102 under point
heat source �=1 acted at the origin

Fig. 7 Contour of nondimensional electric displacement D�

Ã103 under point heat source �=1 acted at the origin
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terms of elementary functions, it is very convenient to use. Typi-
cal numerical examples are presented. When the surface is under
point charge, concentrated forces and concentrated moments, the
corresponding solutions are listed in Appendix B.
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Appendix A

A.1 Eigenvalues in General Solution
The sixth degree polynomial to determine the three eigenvalues

sj �j=1,2 ,3� is

a0s6 − b0s4 + c0s2 − d0 = 0 �A1�
where

a0 = c44�e33
2 + c33�33�

b0 = c33�c44�11 + �e15 + e31�2� + �33�c11c33 + c44
2 − �c13 + c44�2�

+ e33�2c44e15 + c11e33 − 2�c13 + c44��e15 + e31��

c0 = c44�c11�33 + �e15 + e31�2� + �11�c11c33 + c44
2 − �c13 + c44�2�

+ e15�2c11e33 + c44e15 − 2�c13 + c44��e15 + e31��

d0 = c11�e15
2 + c44�11� �A2�

A.2 Constants �mj in General Solution
�mj �m=1,2 ,3; j=1,2 ,3 ,4� in Eq. �7a� are defined as follows:

�1j = sj	2j/	1j

�2j = sj	3j/	1j

�31 = �32 = �33 = 0

�34 = 	44/	14 �A3�
where

	mj = am − bmsj
2 + cmsj

4 �j = 1,2,3�

	44 = a0s4
6 − b0s4

4 + c0s4
2 − d0 �A4�

and

a1 = − �11�c44�11 + e15
2 �

b1 = �c13 + c44���33�11 − p3e15� + �e15 + e31���33e15 + p3c44�

− �11�c33�11 + c44�33 + 2e15e33�

c1 = �c13 + c44���33�33 − p3e3� + �e15 + e31���33e33 + p3c33�

− �11�e33
2 + c33�33�

a2 = c11��33�11 − p3e15� − �11��11�c13 + c44� + e15�e15 + e31��

b2 = c44��33�11 − p3e15� + c11��33�33 − p3e33� − �11�c13 + c44� + �e15

+ e31��p3�c13 + c44� + �33�e15 + e31� − �11e33�

c2 = c44��33�33 − p3e33�

a3 = c11��33e15 + p3c44� + �11�e31c44 − e15c13�

b3 = p3�c11 − c13
2 − 2c13c44� + �11�c33�e15 + e31� − e33�c13 + c44��

− �33�c13�e15 + e31� + c44e31 − c11e33�

Fig. 8 Contour of nondimensional electric displacement D�

Ã103 under point heat source �=1 acted at the origin

Table 1 Material properties of cadmium selenide †31‡

Elastic constants ��1010 N m−2�

c11 c12 c13 c33 c44
7.41 4.52 3.93 8.36 1.32

Thermal moduli ��105 N K−1 m−2� Piezoelectric constant �C m−2�

�11 �33 e31 e33 e15
6.21 5.51 −0.16 0.347 −0.138

Dielectric constant ��10−11 C2 N−1 m−2� Pyroelectric
constant

��10−6 C N−1�

Heat conduction coefficients
�W K−1 m−1�

Thermal expansion
coefficient

��10−6 K−1�

�11 �33 p3 	11 	33 ��
8.26 9.03 −2.94 9.0 9.0 4.4
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c3 = c44�p3 + �33e33� �A5�

a0, b0, c0, and d0 are defined in �A2�.

Appendix B

B.1 Solution to the Problem of Combination of Con-
centrated Force Pz and Point Charge Q

This is still a nontorsional axisymmetric problem. Introduce the
following harmonic functions;

�0 = �4 = 0 � j = B j ln Rj
* �j = 1,2,3� �B1�

where Rj
* is defined in Eq. �12� and B j �j=1,2 ,3� are constants to

be determined by

�
j=1

3

sj�1jB j = 0

2��
j=1

3

�mjB j = Pm �m = 1,2� �B2�

where

P1 = Pz P2 = − Q

B.2 Solution to the Problem of Concentrated Force Px

This is not an axisymmetic problem and the general solution
�3a� should be used. Introducing the following harmonic func-
tions:

�0 =
C0r sin �

R0
* � j =

C jr cos �

Rj
* �j = 1,2,3� �4 = 0 �B4�

where Rj
* is defined in Eq. �12� and Cj �j=0,1 ,2 ,3� are constants

to be determined by

c44s0C0 + �
j=1

3

sj�1jC j = 0

�
j=1

3

�mjC j = 0 �m = 1,2�

− c44s0C0 + �
j=1

3

sj�1jC j =
Px

�
�B5�

The solution for concentrated force Py is

�0 =
D0r cos �

R0
* � j =

D jr sin �

Rj
* �j = 1,2,3� �4 = 0 �B6�

where D j �j=0,1 ,2 ,3� are constants to be determined.

B.3 Solution to the Problem of Concentrated Moment
My

This is not an axisymmetic problem and general solution �3�
should be used. Introducing the following harmonic functions:

�0 =
E0r sin �

R0R0
* � j =

E jr cos �

RjRj
* �j = 1,2,3� �4 = 0 �B7�

where Rj and Rj
* is defined in Eq. �12� and E j �j=0,1 ,2 ,3� are

constants to be determined by

c44s0E0 + 2�
j=1

3

sj�1jE j = 0

− �ms0E0 + �
j=1

3

sj�mjE j = 0 �m = 1,2�

2��
j=1

3

�1jE j = My �B8�

where �m are defined in Eq. �7c�
The solution for concentrated moment Mx is

�0 =
F0r cos �

R0R0
* � j =

F jr sin �

RjRj
* �j = 1,2,3� �4 = 0 �B9�

where F j �j=0,1 ,2 ,3� are constants to be determined.

B.4 Solution to the Problem of Concentrated Moment
Mz

This is a torsional axisymmetric problem. Introducing the fol-
lowing harmonic functions:

�0 =
G0

R0
� j = 0 �j = 1,2,3,4� �B10�

where R0 is defined in Eq. �12� and G0 is constant to be deter-
mined by

G0 = −
Mz

4��c44c66

�B11�
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Free Convection and Mass
Transfer Flow Near a Moving
Vertical Porous Plate: An
Analytical Solution
An exact solution of the problem of the unsteady free convection and mass transfer flow
near an infinite vertical porous plate, which moves with time-dependent velocity in a
viscous and incompressible fluid, is presented here by the Laplace transform technique.
All expressions of the new solutions of the present problem were obtained in closed forms
with arbitrary Prandtl number �Pr�, Schmidt number �Sc�, thermal Grashof number �Gr�,
and mass Grashof number �Gm�. Two applications of physical interest for porous or
nonporous plate are discussed. Applying numerical values into the expressions of ana-
lytical solution, we was also discussed the vertical air flows—the usual phenomenon at
plumes into the atmosphere. �DOI: 10.1115/1.2745411�

Keywords: free convection, heat transfer, mass transfer, porous plate, Laplace
transforms

1 Introduction
Free convection flow involving coupled heat and mass transfer

occurs frequently in nature. The driving forces for this flow arise
due to the temperature and concentrations variations in the fluid.
In atmospheric flows, for example, thermal convection resulting
from heating of the earth by sunlight is affected by differences in
water vapor concentration. Moreover, there are several engineer-
ing situations wherein combined heat and mass transport arise,
viz. humidifiers, dehumidifiers, desert coolers, chemical reactors
�1�. The usual way to study these phenomena is to consider a
characteristic moving continuous surface.

Extensive research work has been published on free convection
flow near vertical plate or surface with different boundary condi-
tions �1,2�. The mass transfer effects on free convection flow past
an impulsively started infinite vertical isothermal plate were first
studied by Soundalgekar �3�. He gave an exact solution of this
problem governed by coupled linear differential equations, using
the Laplace transform technique. Then, free convection flow with
mass transfer past a vertical moving plate has been studied by
various authors �4–8�.

Recently, the effects of the phenomenon of mass transfer on a
free convection flow near an infinite vertical porous plate have
been extensively studied by Takhar et al. �9�, solving the problem
numerically. Similar problems of the free convection with mass
transfer have been also studied numerically by Sivasankaran et al.
�10� and Alan et al. �11�. Hence, it appears that the analytical
solution of this problem will be of greater interest.

The purpose of the present paper is to solve analytically the
problem of the unsteady free convection flow of a viscous and
incompressible fluid with the effects of mass transfer near an in-
finite vertical porous plate. Particularly, several flows due to an
infinite, vertical, porous and moving plate �or surface� are consid-
ered under the action of the buoyancy forces, which arise from the
combination of thermal and chemical species diffusion. A general

exact solution for the partial differential equations governing these
flows is obtained with the aid of the Laplace transform. Further-
more, this general result is applied for the most important cases of
the flow where the motion of the porous plate has uniform veloc-
ity or acceleration. The case of the nonporous vertical plate is also
discussed. During the course of discussions we consider the fluid
as air in the presence of foreign species. The conclusions are
finally presented.

The present results will be valuable useful for engineering, geo-
physical and environmental applications, especially for environ-
mental boundary layer under the buoyancy effects �1,12�.

2 Formulation of the Problem
Here the unsteady free convection and mass transfer flow of a

viscous incompressible fluid near an infinite porous vertical plate
�or surface� is considered. On this plate an arbitrary point has been
chosen as the origin of a Cartesian coordinate system with the x�
axis is along the plate in the upward direction and the y� axis
normal to the plate �Fig. 1�.

Initially, the plate and the fluid are at the same constant tem-
perature T�� and in stationary condition. Also, the species concen-
tration C�� is the same everywhere. Subsequently �t��0�, this
plate is assumed to be moving with a velocity U0f�t�� in its own
plane along the x� axis; instantaneously the temperature of the
plate and the concentration are raised to Tw� ��T�� � and Cw� ��C�� �,
respectively, which are hereafter regarded as constant.

In physical terms, we also assume for free convection flows
that:

�i� All the physical properties of the fluid such as coefficient
of viscosity ���, coefficient of kinetic viscosity ���, spe-
cific heat at constant pressure �cP�, thermal conductivity
���, volumetric coefficient of thermal expansion ��1

*�,
volumetric coefficient of expansion for concentration ��2

*�,
chemical molecular diffusivity �D�, etc., remain constant.

�ii� The influence of variations of density ��� �with tempera-
ture� and species concentration are considered only on the
body force term, in accordance with the usual Boussinesq
approximation �1,4�.

�iii� In the energy equation, the term due to the viscous dissi-

1Permanent and corresponding address: Pediou Volis 32, Stavraki, 453 22, Ioan-
nina, Greece.
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pation can be neglected in comparison with the conducting
term �1,13�. This is a valid assumption, because of small
velocities usually encountered in free convection flows
�4�.

�iv� In the energy equation and in the concentration equation,
the thermal-diffusion �Soret� and diffusion-thermal �Du-
four� effects can be ignored, because the level of concen-
tration is usually assumed as very low in free convection
flows �1,6�.

�v� Under these assumptions, the physical variables are func-
tions of the space coordinate y� and time t� only, since the
flow of the fluid is assumed to be in the direction of the x�
axis.

After all the above assumptions, it can be shown that the gov-
erning equations of the two-dimensional flow can be expressed as
follows �4�:

Continuity equation (on integration form):

�� = const. = �0� �say� �1�

where �0� is the normal velocity of suction or injection at the wall
according as �0�	0 or �0��0, respectively; �0�=0 represents the
case of a nonpermeable wall.

Momentum equation:

�u�

�t�
+ �0�

�u�

�y�
= �

�2u�

�y�2 + g�1
*�T� − T�� � + g�2

*�C� − C�� � �2�

Energy equation:

�T�

�t�
+ �0�

�T�

�y�
=

�

�cP

�2T�

�y�2 �3�

Concentration equation:

�C�

�t�
+ �0�

�C�

�y�
= D

�2C�

�y�2 �4�

Here u� is the velocity, T� is the temperature, C� is the species
concentration, and g is the acceleration.

Assuming that no slipping occurs between the plate and the
fluid, the initial and boundary conditions corresponding to the
present problem are

u��y�,t�� = 0 T��y�,t�� = T�� C��y�,t�� = C��

for y� 
 0 and t� � 0 �5a�

u��0,t�� = U0f�t�� T��0,t�� = Tw� C��0,t�� = Cw�

for t� � 0 �5b�

u���,t�� → 0 T���,t�� → T�� C���,t�� → C��

for t� � 0 �5c�
The above equations can be reduced to nondimensional forms

by the introduction of the following dimensionless variables and
parameters:

y = y�U0/� t = t�U0
2/�, u = u�/U0, �0 = �0�/U0 �6a�

� = �T� − T�� �/�Tw� − T�� � �6b�

C = �C� − C�� �/�Cw� − C�� � �6c�

Pr = �cP/� �6d�

Sc = �/D �6e�

Gr = �g�1
*�Tw� − T�� �/U0

3 �6f�

Gm = �g�2
*�Cw� − C�� �/U0

3 �6g�

where Gr is the thermal Grashof number, Gm is the mass Grashof
number, Pr is the Prandtl number, and Sc is the Schmidt number.

Using Eqs. �6�, we obtain the nondimensional equations of the
present problem

�2�

�y2 − �0Pr
��

�y
− Pr

��

�t
= 0 Energy equation �7a�

�2C

�y2 − �0Sc
�C

�y
− Sc

�C

�t
= 0 Concentration equation �7b�

�2u

�y2 − �0
�u

�y
−

�u

�t
= − Gr� − GmC Momentum equation

�7c�
The corresponding initial and boundary conditions of this sys-

tem �7� of the differential equations are

u�y,t� = 0, T�y,t� = 0, C�y,t� = 0, for y 
 0 and t � 0

�8a�

u�0,t� = f�t�, T�0,t� = 1, C�0,t� = 1, for t � 0 �8b�

u��,t� → 0, T��,t� → 0, C��,t� → 0, for t � 0 �8c�
The system �7� of differential equations, subject to the bound-

ary conditions �8�, includes the effects of free convection and
mass transfer on the flows near a moving isothermal vertical po-
rous plate.

3 Solution of the Problem
In order to obtain the analytical solution of the system �7�

of differential equations, we shall use the Laplace
transform technique.

Applying the Laplace transform �with respect to time t� to Eqs.
�7� and �8�, we get the solution of this system in the transform
domain in the form

�̄�y,s� =
1

s
e−ry �9�

C̄�y,s� =
1

s
e−my �10�

ū�y,s� = f̄�s�e−qy + Ār�y,Pr,s� + Ām�y,Sc,s� �11�
where

Ār�y,Pr,s� =
Gr

s�r2 + �0r − s�
�e−qy − e−ry� for Pr � 1 �12a�

Fig. 1 A schematic of the problem and coordinate system
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Ār�y,1,s� =
yGr

s��0
2 + 4s�1/2e−qy for Pr = 1 �12b�

Ām�y,Sc,s� =
Gm

s�m2 + �0m − s�
�e−qy − e−my� for Sc � 1 �12c�

Ām�y,1,s� =
yGm

s��0
2 + 4s�1/2e−qy for Sc = 1 �12d�

with the abbreviations

q � �s +
1

4
�0

2�1/2

−
1

2
�0 �13a�

r � Pr
1/2�s +

1

4
�0

2Pr�1/2

−
1

2
�0Pr �13b�

m � Sc
1/2�s +

1

4
�0

2Sc�1/2

−
1

2
�0Sc �13c�

Now, the exact solution of the system �7� can be obtained by
taking the inverse transforms of Eqs. �9�–�11�. So, the general
solution of the present problem for the temperature ��y , t�, the
species concentration C�y , t� ant the velocity u�y , t� for t�0 is in
nondimensional form,

��y,t� =
1

2
erfc�1

2
y�Pr/t�1/2 −

1

2
�0�Prt�1/2	

+
1

2
ePr�0y erfc�1

2
y�Pr/t�1/2 +

1

2
�0�Prt�1/2	 �14a�

C�y,t� =
1

2
erfc�1

2
y�Sc/t�1/2 −

1

2
�0�Sct�1/2	

+
1

2
eSc�0y erfc�1

2
y�Sc/t�1/2 +

1

2
�0�Sct�1/2	 �14b�

u�y,t� = 
�y,t� + Ar�y,Pr,t� + Am�y,Sc,t� �14c�

where


�y,t� = L−1� f̄�s�e−qy� �15�

Ar�y,Pr,t� =
GrPr

Pr − 1
L−1� 1

sr2 �e−qy − e−ry�	 �16a�

=
Gr

�0
3Pr�Pr − 1�

L−1
�e−qy − e−ry��Pr
2�0

2

r3 −
Pr�0

r2 +
1

r
−

1

r + �0Pr
	�

�16b�

=
Gr

�0
2�Pr − 1�
exp�1

2
y�0 −

1

4
�0

2t��
�=2

3

��Ts��y,−
1

2
�0Pr

1/2,
1

4
�0

2�Pr

− 1�,t� − exp�1

2
y�0Pr −

1

4
�0

2Prt��
�=2

3

��Ts���yPr
1/2,

−
1

2
�0Pr

1/2,0,t�	� +
Gr

�0
2Pr�Pr − 1�

�F�y,
1

2
�0,t�

− F�yPr
1/2,

1

2
�0Pr

1/2,t�	 for Pr � 1 �16c�

Ar�y,1,t� =
yGr

2�0
�erfc�1

2
y/t1/2 −

1

2
�0t1/2� − ey�0 erfc�1

2
y/t1/2

+
1

2
�0t1/2�	 for Pr = 1 �16d�

Am�y,Sc,t� =
GmSc

Sc − 1
L−1� 1

sm2 �e−qy − e−my�	 �17a�

=
Gm

�0
3Sc�Sc − 1�

L−1
�e−qy − e−ry��Sc
2�0

2

m3 −
Sc�0

m2 +
1

m
−

1

m + �0Sc
	�

�17b�

=
Gm

�0
2�Sc − 1�
exp�1

2
y�0 −

1

4
�0

2t��
�=2

3

��Ts��y,−
1

2
�0Sc

1/2,
1

4
�0

2

��Sc − 1�,t� − exp�1

2
y�0Sc −

1

4
�0

2Sct�
��

�=2

3

��Ts���ySc
1/2,−

1

2
�0Sc

1/2,0,t�	� +
Gm

�0
2Sc�Sc − 1�

��F�y,
1

2
�0,t� − F�ySc

1/2,
1

2
�0Sc

1/2,t�	 for Sc � 1 �17c�

Am�y,1,t� =
yGm

2�0
�erfc�1

2
y/t1/2 −

1

2
�0t1/2�

− ey�0 erfc�1

2
y/t1/2 +

1

2
�0t1/2�	 for Sc = 1

�17d�

In the above expressions, the functions Tsj�� ,k ,� , t�, j=2,3 are
derived in Appendix A �see Eqs. �A3��, the coefficients � j and � j,
j=2,3 are given by

�2 = −
1

Pr
, �3 =

�0

Pr
1/2 , �2 = −

1

Sc
, �3 =

�0

Sc
1/2 �18�

and

F�z,b,t� =
1

2
erfc�1

2
z/t1/2 − bt1/2� +

1

2
e2zb erfc�1

2
z/t1/2 + bt1/2�

�19�
The new expressions �14� are the general solution of the present

problem. This general solution includes the effects of the heating
�cf. term Ar�, the diffusion �cf. term Am�, and the motion of the
plate �cf. term 
�y , t��. Hereafter, we shall confine our moreover
analysis primary to nondimensional velocity u�y , t� for various
types of f�t�, since the nondimensional temperature ��y , t� and the
nondimensional species concentration C�y , t� are clearly described
from the mathematical expressions �14a� and �14b�, respectively.

4 Applications of the General Solution
In the present section the previous general result is applied to

the two most important cases of flow: �i� the case of the motion of
the plate with uniform velocity and �ii� the case of a single accel-
erated motion of the plate.

Case 1: Motion with uniform velocity. In this case the motion of
plate corresponds to f�t�=H�t� �with H�t� the Heaviside unit func-

tion and f̄�s�=1 /s�. So, we observe that the solutions �14a� and
�14b� for the temperature ��y , t� and the species concentration
C�y , t�, respectively, are unaffected and the solution �14c� for the
velocity u�y , t� for t�0 gives
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u�y,t� =
1

2
erfc�1

2
y/t1/2 −

1

2
�0t1/2� +

1

2
e�0y erfc�1

2
y/t1/2 +

1

2
�0t1/2�

+ Ar�y,Pr,t� + Am�y,Sc,t� �20�

where the terms Ar�y , Pr , t� and Am�y ,Sc , t� are given from Eqs.
�16� and �17�, respectively, for various values of Pr and Sc.

Case 2: Accelerated motion. Consider now a single accelerated
motion of the plate, which corresponds to g�t�= tH�t� �with ḡ�s�
=1 /s2�. In this case, the solutions �14a� and �14b� are again un-
affected and the solution �14c� for the velocity u�y , t� for t�0
gives

u�y,t� =
1

2
�t − y/�0�erfc�1

2
y/t1/2 −

1

2
�0t1/2�

+
1

2
�t + y/�0�e�0y erfc�1

2
y/t1/2 +

1

2
�0t1/2�

+ Ar�y,Pr,t� + Am�y,Sc,t� �21�

where the terms Ar�y , Pr , t� and Am�y ,Sc , t� are given again from
Eqs. �16� and �17�, respectively, for various values of Pr and Sc.

5 The Case of the Nonporous Vertical Plate
In this section we shall discuss a special case of the present

problem considering the moving vertical plate as a nonporous
plate. In this case suction or injection at the moving plate �or
surface� is zero.

When the moving plate is a nonporous plate ��0=0�, we get
reduced expressions of the general solution �14� for the tempera-
ture ��y , t�, the species concentration C�y , t�, and the velocity
u�y , t� for t�0, namely,

��y,t� = erfc�1

2
y�Pr/t�1/2	 �22a�

C�y,t� = erfc�1

2
y�Sc/t�1/2	 �22b�

u�y,t� = 
*�y,t� + Ar
*�y,Pr,t� + Am

*�y,Sc,t� �22c�

where


*�y,t� = L−1� f̄�s�e−ys1/2� �23�

Ar
*�y,Pr,t� =

Gr

Pr − 1
L−1�s−2�e−ys1/2

− e−yPrs
1/2

�� �24a�

=
Gr

Pr − 1

�t +

1

2
y2�erfc�1

2
y/t1/2� − y�t/��1/2e−y2/4t

− �t +
1

2
y2Pr�erfc�1

2
y�Pr/t�1/2	

+ yPr�t/��1/2e−y2Pr/4t� �24b�

Ar
*�y,1,t� =

1

2
yGrL

−1�s−3/2e−ys1/2
� = yGr�t/��1/2e−y2/4t

−
1

2
y2Gr erfc�1

2
y/t1/2� �24c�

Am
*�y,Sc,t� =

Gm

Sc − 1
L−1�s−2�e−ys1/2

− e−yScs1/2
�� �25a�

=
Gm

Sc − 1

�t +

1

2
y2�erfc�1

2
y/t1/2� − y�t/��1/2e−y2/4t

− �t +
1

2
y2Sc�erfc�1

2
y�Sc/t�1/2	 + ySc�t/��1/2e−y2Sc/4t�

�25b�

Am
*�y,1,t� =

1

2
yGmL−1�s−3/2e−ys1/2� = yGm�t/��1/2e−y2/4t

−
1

2
y2Gm erfc�1

2
y/t1/2� �25c�

Now, we consider the important cases of flow near a nonporous
vertical moving plate: �i� the case of the motion of the plate with
uniform velocity and �ii� the case of a single accelerated motion of
the plate:

�i� For the case f�t�=H�t� and �0=0, the expressions �22a�
and �22b� remain unaffected and the relation �22c� is re-
duced to

u�y,t� = erfc �1

2
y/t1/2� + Ar

*�y,Pr,t� + Am
*�y,Sc,t�

�26�

�ii� For the case f�t�= tH�t� and �0=0, the expressions
�22a� and �22b� remain again in the same form. Then,
instead of the solution �22c�, we get the following analyti-
cal expression:

u�y,t� = �t +
1

2
y2�erfc�1

2
y/t1/2� − y�t/��1/2 exp�− y2/4t�

+ Ar
*�y,Pr,t� + Am

*�y,Sc,t� �27�

The terms Ar
*�y , Pr , t� and Am

*�y ,Sc , t� of Eqs. �26� and
�27� are given from Eqs. �24� and �25�, respectively, for
various values of Pr and Sc.

It should be pointed out here that my results of the case �i� �cf.
Eq. �26�� are identical with those of Soundalgekar �3�.

6 Discussion
An analytical solution for the problem of the unsteady free-

convection flow with mass transfer near a moving porous vertical
plate has been determined without any restrictions.

Expression �14� is the general solution of the present problem.
The expressions �14a� and �14b� prescribe clearly the temperature
��y , t� and the species concentration C�y , t�, respectively.

The velocity field was obtained by superposition of three terms
�cf. Eq. �14c��. The first term 
�y , t� depends on the motion of the
plate. So, the previous result is applied to the two most important
cases of the flow where the motion of the plate has uniform ve-
locity or acceleration �cf. Eqs. �20� and �21��. The second term
Ar�y , Pr , t� expresses the effects of free convection currents due to
the heating of the plate. The third term Am�y ,Sc , t� expresses the
effects of mass transfer on the flow due to the concentration level
near to the plate.

The general solution which was exemplified in the previous
sections can prove that its results satisfy the initial basic equations
of the present problem.

Indeed, Eqs. �14� are exact solution of the system of differential
Eqs. �7�. First of all, it can be easily verified that the initial and
boundary conditions by ��y , t�, C�y , t�, and u�y , t�. The verifica-
tion of ��y , t� and C�y , t� given by �14a� and �14b� as solutions of
�7a� and �7b�, respectively, are straightforward, and are not done
here.

We shall, however, show that Eq. �14c� represents the exact
solution of Eq. �7c� for the motion of the plate with uniform
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velocity or single acceleration �cf. Eqs. �20� and �21��. So, we
observe that the left-hand side of Eq. �7c� can be reduced in the
form

�2u�y,t�
�y2 − �0

�u�y,t�
�y

−
�u�y,t�

�t

= � �2

�y2 − �0
�

�y
−

�

�t
��
�y,t� + Ar�y,Pr,t� + Am�y,Sc,t��

�28a�

=− GrF�yPr
1/2,

1

2
�0Pr

1/2,t� − GmF�ySc
1/2,

1

2
�0Sc

1/2,t� �28b�

=− Gr� − GmC �28c�
Because it can be calculated the following expressions �cf. Appen-
dix B� for both cases of the motion of the plate with uniform
velocity or single acceleration and for any values of Pr and Sc,

� �2

�y2 − �0
�

�y
−

�

�t
�
�y,t� = 0 �29a�

� �2

�y2 − �0
�

�y
−

�

�t
�Ar�y,Pr,t� = − GrF�yPr

1/2,
1

2
�0Pr

1/2,t�
�29b�

� �2

�y2 − �0
�

�y
−

�

�t
�Am�y,Sc,t� = − GmF�ySc

1/2,
1

2
�0Sc

1/2,t�
�29c�

where the function F�z ,b , t� is given from Eq. �19�.
Finally, from Eq. �28�, it can be seen that Eq. �7c� is identically

satisfied for both cases of the motion of the plate �cf. Sec. 4�.
It should be pointed out here that the present solutions of the

problem were obtained in closed forms with arbitrary Prandtl
number �Pr� and Schmidt number �Sc�. So, these solutions are
ready for physical applications with Pr=Sc or Pr�Sc.

The present solutions can be applied to an important class of
flows in which the driving force for the flow is provided by com-
bination of the thermal and chemical species diffusion effects.
Examples of these applications are the flames and combustion,
such as those related to furnaces, fires, chemical reactors, and
engines, which are responsible for atmospheric pollution �1�.

In order to get physical insight into the present problem, we
give an example of evaluation of the numerical values of the
velocity u�y , t�, the temperature ��y , t� and the species concentra-
tion C�y , t� for the case of air �Pr=0.71�. The present results for

air could be used as base for the study of plume flows into the
atmosphere �12�, which are responsible for atmospheric pollution
�1�.

Numerical calculations in the present example have been car-
ried out for different values of Gr and Gm and for fixed value of Pr
�=0.71�; the numerical values of the Schmidt number �Sc� are
chosen such that they represent a reality in case of atmospheric air
�cf., the numerical values of Sc, Gr and Gm on the work of Das
et al. �6��.

Applying numerical values into the expressions of exact solu-
tions �cf. Eqs. �20�, �21�, �26�, and �27�� for the velocity, we get
the velocity profiles of air flow near porous and nonporous verti-
cal plates; Fig. 2 corresponds to the plates moving with uniform
velocity and Fig. 3 to the plates, which are moved with single
acceleration. We observe that the velocities near the porous plate
are smaller than those of nonporous plate in both figures. In Fig.
2, the results are identical with those of Soundalgekar �3�, since
his exact solution of nonporous plate with uniform velocity is
identical with Eq. �26�.

The temperature profiles are derived from �14a� and �22a� and
are shown in Fig. 4 for air. Similar, the species concentration
profiles are evaluated from expressions �14b� and �22b� and these
are plotted in Fig. 5. We observe that the temperatures and species
concentration near the porous plate are smaller than those of non-

Fig. 2 Comparison of velocity profiles between the air flows
near porous and nonporous vertical plates, which are moved
with uniform velocity

Fig. 3 Comparison of velocity profiles between the air flows
near porous and nonporous vertical plates, which are moved
with single acceleration

Fig. 4 Comparison of temperature profiles between the air
flows near porous and nonporous vertical plates

Journal of Applied Mechanics JANUARY 2008, Vol. 75 / 011014-5

Downloaded 04 May 2010 to 171.66.16.43. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



porous plate in both figures. In both Figs. 4 and 5, the results are
identical with those of Soundalgekar �3�, since his exact solutions
of nonporous are identical with Eqs. �22a� and �22b�.

For various values of Schmidt number �Sc� the velocity profiles
of air flow near porous plate are shown on Fig. 6. The numerical
values of Sc are chosen such that they represent a reality in case of
air. These values of Sc are: 0.24 �H2�, 0.30 �He�, 0.60 �H2O�, 0.78
�NH3�, and 1.00 �CO2�. It is seen from this figure that an increase
in the Schmidt number leads to an increase in the velocity of air
�10�.

Moreover, for different values of the Grashof number �Gr� or of
the modified Grashof number �Cm� the velocity profiles of air flow
near porous plate are shown in Fig. 7 and Fig. 8, respectively. It is
observed that increasing values of the Gr or Cm leads to a fall in
the velocity for both cases.

7 Conclusions

�1� A general analytical solution for the problem of the un-
steady free-convection flow with mass transfer near a mov-
ing porous vertical plate has been determined without any
restrictions.

�2� It was proven that this general solution satisfies the initial
basic equations of the present problem.

�3� The new analytical solution was discussed for the special
case of the present problem considering the moving vertical
plate as a nonporous plate. In this case of nonporous plate
moving with uniform velocity, the present solution was
found to be identical with the result of Soundalgekar �3�.

�4� We study a physical example of evaluation of the numerical
values of the velocity, the temperature and the species con-
centration for the case of air �Pr=0.71� near porous and
nonporous plates. So, we deduce from the graphs that the
velocities, temperatures, and species concentration near the
porous plate are smaller than those of nonporous plate �3�.

�5� To our knowledge, this work gives in close form the actual
analytical solution of the free-convection flow with the
mass transfer problem, which—besides engineering
applications—is interested in the study of vertical air flows
into the atmosphere.

Nomenclature
Am�y ,Sc , t� � function due to the effects of mass transfer �cf.

Eq. �16��
Ar�y , Pr , t� � function due to the effects of the heating �cf.

Eq. �17��
C � dimensionless species concentration in the fluid

near the plate
C� � species concentration in the fluid near the plate
C�� � species concentration in the fluid far away

from the plate
Cw� � constant species concentration in the fluid at

the plate
cP � specific heat at constant pressure
D � chemical molecular diffusivity

f�t�� � nondimensional function of time
F�z ,b , t� � an abbreviating function �cf. Eq. �19��

g � acceleration due to gravity
Gr, Gm � thermal Grashof and mass Grashof numbers,

respectively
Pr, Sc � Prandtl and Schmit numbers, respectively

t�, t � time and dimensionless time, respectively
T� � temperature of the fluid near the plate
T�� � temperature of the fluid far away from the

plate
Tw� � constant temperature of the plate

Tsn�� ,k ,� , t� � function of the inverse Laplace transforms �cf.
Eq. �A1��

Fig. 5 Comparison of species concentration profiles between
the air flows near porous and nonporous vertical plates

Fig. 6 Velocity profiles of the flow near a porous vertical plate
for varying Schmidt number „Sc… at given Pr=0.71

Fig. 7 Velocity profiles of the flow near a porous vertical plate
for varying Grashof number „Gr… at given Pr=0.71

Fig. 8 Velocity profiles of the flow near a porous vertical plate
for varying modified Grashof number „Cm… at given Pr=0.71
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u, � � dimensionless velocity components in the x�,
y� direction, respectively

u�, �� � velocity components in the x�, y� direction,
respectively

U0 � constant velocity of the plate
x � dimensionless coordinate along the plate in the

upward direction
x� � space coordinate in the x� axis along the plate

in the upward direction
y � dimensionless coordinate normal to the plate

y� � space coordinate in y� axis normal to the plate

Greek Symbols
� j � constant coefficients for j=2,3 �cf. Eq. �18��
�2

* � volumetric coefficient of expansion for
concentration

�1
* � volumetric coefficient of thermal expansion

� j � constant coefficients for j=2,3 �cf. Eq. �18��
� � dimensionless temperature of the fluid near the

plate
� � thermal conductivity
� � coefficient of viscosity
� � coefficient of kinetic viscosity
� � density

�0�, �0 � velocity and dimensionless velocity of suction
or injection, respectively


�y , t� � function due to the motion of the plate �cf.
Eqs. �15�, �B7�, �B8��

Appendix A
Some inverse Laplace transforms used in the text:
The following functions are introduced. These were obtained

from the inverse Laplace transforms, which used in the text and
are not available in the literature of the extensive tables.

For Re��2��0 we have �14�

T��,k,�,t� � Ts1��,k,�,t� = L−1
 e−�s1/2

�s + ��1/2 + k
�

=
e−�2/4t

��t�1/2 −
k3

k2 + �
e�k+k2t erfc� a

2t1/2 + kt1/2�
−

�

2�k + i�1/2�
e−�t−i��1/2

erfc� a

2t1/2 − i��t�1/2�
−

�

2�k − i�1/2�
e−�t+i��1/2

erfc� a

2t1/2 + i��t�1/2� t � 0

�A1�
This function can be given also by the useful form

T��,k,�,t� =
e−�2/4t

��t�1/2 −
k3

k2 + �
e�k+k2t erfc� a

2t1/2 + kt1/2�
−

�2

�1/2�k2 + ��
e−�t


0

t

�−1/2e��−�2/4�d�

−
�k�

2�1/2�k2 + ��
e−�t


0

t

�−3/2e��−�2/4�d� t � 0

�A2�
Subsequent simplifications and modifications of Eq. �A1� give

other results for inverse Laplace transforms. So, differencing the
function �A1� with respect to k, we get

Tsn+1��,k,�,t� = L−1
 e−�s1/2

��s + ��1/2 + k�n+1� =
�− 1�n

n!

�n

�knT��,k,�,t�

�A3a�

=Qn��,k,�,t� − Un+1��,k,�,t� n = 1,2,3, . . . �A3b�

The first term of Eq. �A3b� expresses the partial derivatives of the
product Qk3 / �k2+��, namely

Qn��,k,�,t� =
�− 1�n+1

n!

 k3

k2 + �

�nQ

�kn + �n

1
� �

�k
� k3

k2 + �
� �n−1Q

�kn−1

+ ¯ + Q
�n

�kn� k3

k2 + �
�� n = 1,2, . . . �A3c�

with the abbreviation

Q � e�k+k2t erfc�1

2
�t−1/2 + kt1/2� �A3d�

Special cases can be found by the calculations of the partial de-
rivatives of Qn=Qn�� ,k ,� , t� with n=1,2. So, we get �14�

Q1 = − 2�t/��1/2K0 exp�− �2/4t� + ��K0 + K1�Q �A4a�

Q2 = 2�t/��1/2�1

2
�K0 + K1�exp�− �2/4t�

− �1

2
�2t + �2�K0 + �K1 +

1

2
K2	Q

= 2�t/��1/2K1 exp�− �2/4t�

− �tK0 +
1

2
�K1 +

1

2
K2�Q −

1

2
�Q1 �A4b�

where

� � 2kt + � �A5a�

Kn �
�n

�kn� k3

k2 + �
� n = 0,1,2, namely �A5b�

K0 �
k3

k2 + �
K1 �

k2�k2 + 3��
�k2 + ��2 �A5c�

K2 � −
2k�

�k2 + ��3 �k2 − 3�� �A5d�

The second term of Eq. �A3b� is given by

Un+1��,k,�,t� =
�

2�k + i�1/2�n+1e−�t−i��1/2
erfc� a

2t1/2 − i��t�1/2�
+

�

2�k − i�1/2�n+1e−�t+i��1/2
erfc� a

2t1/2

+ i��t�1/2� n = 1,2,3, . . . �A6a�

which is real for real values of �, k, and t, namely

�i� when �	0,

Un+1��,k,�,t� =
�

2�k − ���1/2�n+1e−�t+����1/2

�erfc� a

2t1/2 + ����t�1/2�
+

�

2�k + ���1/2�n+1e−�t−����1/2

�erfc� a

2t1/2 − ����t�1/2� n = 1,2,3, . . .

�A6b�
�ii� when ��0,
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Un+1��,k,�,t� =
�

2�k2 + ���n+1�/2e−��2/4t�

��
�=0

�
�− 1��

��1

2
� + 1� ��t + a2/4t��/2

�cos��n + 1��1 + ��2� n = 1,2,3, . . .

�A6c�

where the angles �1.2 are defined by

tan �1 = �1/2/k tan �2 = 2�1/2t/�

with 0 � �1,2 	 �/2 �A6d�

Equations �A6a�–�A6d� with n=0 give the corresponding expres-
sions of the sum of last two terms in the left-hand side of Eq.
�A1�.

From the expression �A3a� we can find in the tables of Laplace
transforms only the function Ts2�� ,k ,0 , t�. The new expressions
Tsn�� ,k ,� , t� with n=2,3 are used in the text.

We also use the general relation

�2

��2Tsn���1/2,k,�,t� = �
�

�t
Tsn���1/2,k,�,t�, with � real and n

= 1,2,3, . . . �A7�
since we can readily prove �cf. Eq. �A1�� that

�2

��2T���1/2,k,�,t� = �
�

�t
T���1/2,k,�,t� �A8a�

=�
 1

��t�1/2��2�

4t2 −
��1/2k + 1

2t
+ k2�exp�−

�2�

4t
�

− k3 erfc�1

2
���/t�1/2 + kt1/2	 exp���1/2k + k2t�

− �T���1/2,k,�,t�� �A8b�

Appendix B
After extensive algebraic calculations, the following useful re-

sults can be shown for the present paper.
So, using Eqs. �16c� and Eq. �A7�, we get

� �2

�y2 − �0
�

�y
−

�

�t
�Ar�y,Pr,t�

=
Gr

�0
2 � 1

Pr
W2 −

�0

Pr
1/2W3� +

Gr

�0
2Pr�Pr − 1�

F�y,t�

= − GrF�yPr
1/2,

1

2
�0Pr

1/2,t� �B1�

where

W2 � �1

4
�0

2PrT02 + �0
�T02

�y
+

�T02

�t
�exp�1

2
y�0Pr −

1

4
�0

2Prt�
=

yPr
1/2

2t
R �B2�

W3 = �1

4
�0

2PrT03 + �0
�T03

�y
+

�T03

�t
�exp�1

2
y�0Pr −

1

4
�0

2Prt�
= R +

1

2
�0Pr

1/2 erfc�1

2
y�Pr/t�1/2 −

1

2
�0�Prt�1/2	 �B3�

F�y,t� � � �2

�y2 − �0
�

�y
−

�

�t
��F�y,

1

2
�0,t� − F�yPr

1/2,
1

2
�0Pr

1/2,t�	
= −

1

2
�0

2Pr�Pr − 1�e�0yPrerfc�1

2
y�Pr/t�1/2 +

1

2
�0�Prt�1/2

+ Pr
1/2�Pr − 1���0 − y/2t�R �B4�

with the abbreviations

T0� � Ts��yPr
1/2,−

1

2
�0Pr

1/2,0,t� � = 2,3 �B5�

R � ��t�−1/2exp�1

2
y�0Pr −

1

4
�0

2Prt −
y2

4t
Pr� �B6�

and the function F�z ,b , t� is given from Eq. �19�.
We get also same final result �B1� with Pr=1, when we use

directly the expression �16d� for Ar�y ,1 , t�.
Similarly, we have the result of Eq. �29c�. The results of Eq.

�29a� are obtained for two cases of 
�y , t� �cf. Eqs. �20� and �21��,
namely


 =
1

2
erfc�1

2
y/t1/2 −

1

2
�0t1/2� +

1

2
e�0y erfc�1

2
y/t1/2 +

1

2
�0t1/2�

�B7�
or


 =
1

2
�t − y/�0� erfc�1

2
y/t1/2 −

1

2
�0t1/2�

+
1

2
�t + y/�0�e�0y erfc�1

2
y/t1/2 +

1

2
�0t1/2� �B8�
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The boundary perturbation method is used to solve the problem of a nearly circular rigid
inclusion in a two-dimensional elastic medium subjected to hydrostatic stress at infinity.
The solution is taken to the fourth order in the small parameter epsilon that quantifies the
magnitude of the variation of the radius of the inclusion. This result is then used to find
the effective bulk modulus of a body that contains a dilute concentration of such inclu-
sions. The corresponding results for a cavity are obtained by setting the Muskhelishvili
coefficient � equal to �1, as specified by the Dundurs correspondence principle. The
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cal values obtained using the boundary element method, and are shown to have good
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1 Introduction
Determination of the effective elastic moduli of a material con-

taining inclusions or voids is a fundamental problem of mechanics
that has relevance to materials science, geophysics, and biome-
chanics. Most such analyses have been based on the assumption
that the inclusions are ellipsoidal, or special cases thereof, such as
spherical, cylindrical, spheroidal, etc. �1,2�. In fact, the solution of
the problem of an isolated ellipsoidal inclusion in an isotropic
matrix is essentially given by the formulation of Eshelby �3�. In
contrast, few analytical solutions are available for inclusions of
non-ellipsoidal shape. In two dimensions, conformal mapping and
the complex variable methods of Kolosov and Muskhelishvili can
be used, in principle, to analyze inclusions of essentially any
shape �4,5�. Nevertheless, these solutions are difficult to obtain,
due in part to the fact that the conformal mapping function of the
region inside or outside of a circle, to the region outside a pore or
inclusion of arbitrary shape, is usually quite difficult to obtain
�6,7�, except for a few shapes, such as hypotrochoids �8,9� or
quasi-polygons �10–12�.

One method that can be used to develop approximate solutions
to inclusion problems is the boundary perturbation approach. The
basic ideas of the boundary perturbation approach were illustrated
by van Dyke �13� in the context of fluid mechanics. Low and
Chang �14� used this approach to study stresses around nearly
circular pores. Wang and Chao �15� used the boundary perturba-
tion method to solve the problem of a nearly circular inclusion in
plane thermoelasticity. Similar studies were carried out by Parnes
�16� and Gao �17�.

Givoli and Elishakoff �18� used this approach to analyze a cor-
rugated pore in an infinite region, under far-field loading, and
found the solution up to terms of second order in the small pa-
rameter � that quantified the amplitude of the corrugations. In the
present work we extend this solution to fourth order in �, and
consider both the case of a pore and a rigid inclusion. We then use

our solution for the corrugated pore to investigate the effect of
small-scale roughness on the pore compressibility and the effec-
tive bulk modulus of a body containing a dilute concentration of
such pores.

2 Problem Formulation for Infinite Region Containing
a Rigid Inclusion

The solution of a two-dimensional isotropic elasticity problem
can be represented in terms of the Airy stress function �, which
satisfies the bi-harmonic equation �2�2�=0. The general solu-
tion, neglecting those terms that do not correspond to a uniform
stress at infinity, can be written in polar coordinates as �19,20�

� = A0r2 + A1 ln r + A2� +
A3 cos �

r
+

A4 sin �

r

+ �
n=2

�

�A5,nr−n+2 cos n� + A6,nr−n cos n� + A7,nr−n+2 sin n�

+ A8,nr−n sin n�� �1�
The stresses and displacements associated with this solution are
given by

�rr = 2A0 +
A1

r2 −
2A3 cos �

r3 −
2A4 sin �

r3 − �
n=2

�

�A5,n�n + 2��n − 1�r−n

+ A6,nn�n + 1�r−n−2�cos n� − �
n=2

�

�A7,n�n + 2��n − 1�r−n

+ A8,nn�n + 1�r−n−2�sin n� �2�

��� = 2A0 −
A1

r2 +
2A3 cos �

r3 +
2A4 sin �

r3 + �
n=2

�

�A5,n�n − 1��n

− 2�r−n + A6,nn�n + 1�r−n−2�cos n� + �
n=2

�

�A7,n�n − 2��n

− 1�r−n + A8,nn�n + 1�r−n−2�sin n� �3�
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�r� =
A2

r2 −
2A3 sin �

r3 +
2A4 cos �

r3 + �
n=2

�

�A7,n�n��n − 1�r−n + A8,nn�n

+ 1�r−n−2�cos n� − �
n=2

�

�A5,n�n��n − 1�r−n + A6,nn�n

+ 1�r−n−2�sin n� �4�

2Gur = A0�� − 1�r −
A1

r
+

A3 cos �

r2 +
A4 sin �

r2 + �
n=2

�

�A5,n�� + n

− 1�r−n+1 + A6,nnr−n−1�cos n� + �
n=2

�

�A7,n�� + n − 1�r−n+1

+ A8,nnr−n−1�sin n� �5�

2Gu� =
A2

r
+

A3 sin �

r2 −
A4 cos �

r2 + �
n=2

�

�A7,n�� − n + 1�r−n+1

− A8,nnr−n−1�cos n� + �
n=2

�

�− A5,n�� − n + 1�r−n+1

+ A6,nnr−n−1�sin n� �6�

where �A0 ,A1 ,A2 ,A3 ,A4 ,A5n ,A6n ,A7n ,A8n� are constants, and
�r ,�� are the usual polar coordinates.

For an infinite region containing a single inclusion, with hydro-
static stress p acting at infinity, �2� and �3� immediately show that
A0= p /2. The values of the other coefficients will depend on the
shape and elastic properties of the inclusion. Jasiuk et al. �11� and
Jasiuk �21� showed that the effective bulk modulus of a body
containing a dilute concentration of these inclusions can be ex-
pressed solely in terms of the coefficient A1, as follows:

Keff

K
= 1 +

� + 1

� − 1
A1��,p = 1�

�

Ainclusion
c �7�

where K is the two-dimensional bulk modulus of the host mate-
rial, � is the Muskhelishvili parameter of the host material, which
equals 3−4	 for plane strain and �3−	� / �1+	� for plane stress, 	
is the three-dimensional Poisson ratio of the host material, c is
area fraction of the inclusions, and A1 is the coefficient of the log
term in the Airy stress function for the case where the magnitude
of the applied pressure is p=1. The essential explanation of this
result is as follows. The two-dimensional bulk modulus can be
related to the area change of the material, which can be calculated
by integrating the radial displacement over a large circle centered
on the inclusion. The A0 term, which is independent of the inclu-
sion, gives the area change that would occur in the absence of an
inclusion. Most terms in �5� involve sin or cos, and thus their
contributions to the area change integrate out to zero. Only the A1
term gives a non-zero contribution to the excess area change due
to the presence of the inclusion. A rigorous proof of �7� has been
given in �21�.

Dundurs �22� showed that the solution for a body containing a
rigid inclusion could be transformed into the solution for the case
in which the inclusion is a cavity, by setting �=−1. Jasiuk �21�
then showed that the effective bulk modulus of a body containing
a dilute concentration of these cavities would be given by

Keff

K
= 1 +

� + 1

� − 1
A1�� = − 1;p = 1�

�

Apore
c �8�

where � is set equal −1 to in the expression for A1, but the actual
value of � of the host material is used when evaluating the term
��+1� / ��−1�.

We will exploit this correspondence in the present paper. Al-
though we are ultimately mainly interested in the case of vacuous

pores, when using the perturbation approach, the case of a rigid
nearly circular inclusion is much easier to solve. This is because
the boundary condition for the rigid inclusion is that the displace-
ment vector must vanish, which directly implies that both compo-
nents of the displacement, i.e., ur and u�, must vanish along the
boundary. On the the other hand, if the inclusion is a pore, the
traction vector must vanish on the boundary. However, the normal
and tangential components of the traction vector on the actual
non-circular boundary are related to the stress components in the
polar coordinate system in a very complicated manner �18�.
Hence, the solution procedure for a rigid inclusion is substantially
simpler than that for a pore. This simplification will allow us to
find the solution to fourth-order in the perturbation parameter, as
opposed to the second-order solution found by Givoli and Elisha-
koff �18�.

3 General Solution for Rigid Inclusion
We start by considering a rigid circular disk of radius a, in an

infinitely large plate subjected to a far-field hydrostatic stress of
magnitude p. The Airy stress function for this problem is �
= pr2 /2+ ��−1�pa2 ln r /2 �20�, and the associated displacements
and stresses are �23�

ur =
p�� − 1�r

4G
−

p�� − 1�a2

4Gr
u� = 0 �9�

�rr = p +
p�� − 1�a2

2r2 ��� = p −
p�� − 1�a2

2r2 �r� = 0 �10�

Now consider a nearly circular inclusion that has a corrugated
boundary described by

r = a�1 + � sin m�� , �11�

where � is a small parameter representing the amplitude of the
corrugations, and m is an integer that represents the number of
positive �or negative� bumps on the circumference of the circle.
As an example, Fig. 1 shows the inclusion shape for m=8 and
�=0.25.

Following the standard procedure for a regular perturbation
problem �13,18�, we assume that the Airy stress function, the dis-
placements and the stresses can each be expressed as perturbation
series in the small parameter �, i.e.,

��r,�� = �0�r,�� + ��1�r,�� + �2�2�r,�� + ¯ �12�

ur�r,�� = ur
0�r,�� + �ur

1�r,�� + �2ur
2�r,�� + ¯ �13�

Fig. 1 Nearly circular corrugated inclusion subjected to far-
field hydrostatic stress, shown for the case m=8,�=0.10
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u��r,�� = u�
0�r,�� + �u�

1�r,�� + �2u��r,�� + ¯ �14�

where the superscript n in �n denotes the nth Airy function, and is
not a power exponent. When �=0, this solution must reduce to the
solution for a circular inclusion, in which case we can say

�0�r,�� =
pr2

2
+

�� − 1�pa2 ln r

2
�15�

ur
0�r,�� =

p�� − 1�r
4G

−
p�� − 1�a2

4Gr
u�

0�r,�� = 0 �16�

Each of the subsequent Airy functions will be of the form given
by �1�–�6�. As the far-field boundary conditions are already satis-
fied by the zeroth-order solution, the A0 coefficient will vanish in
all the higher-order Airy functions. The remaining coefficients in
these functions are found by satisfying the boundary conditions at
the interface between the matrix and the inclusion. These bound-
ary conditions require that both displacement components vanish
at the interface. Hence, for the purposes of deriving the solution,
the stresses need not be considered any further.

Zero-displacement boundary conditions must be applied at the
boundary of the inclusion, where r�r*=a�1+� sin m��. But each
function ur

n�r ,�� is expressed naturally in terms of r and �. In
order to re-express the boundary conditions at r=a instead of r
=a�1+� sin m��, the displacements are first expanded in a Taylor
series about the value r=a, with a� sin m� as the small variation
in r. Following the procedure used in �18� for the stresses, we can
say that

ur
n�r*,�� � ur

n�a + a� sin m�,�� = ur
n�a,��

+ a� sin m�� �ur
n�r,��
�r

�
r=a
�

+
a2�2 sin2 m�

2

�2ur
n�r,��
�2r

�
r=a

+ �a3�3 sin3 m�

6

�3ur
n�r,��
�3r

�
r=a

+ ¯ �17�

and similarly for u�
n�r*,��. Applying this expansion to every term

in �13�, and then grouping terms according to ascending powers of
�, leads to

ur�r*,�� = 0 = ur
0�a,�� + �a sin m�� �ur

0�r,��
�r

�
r=a

+ ur
1�a,��	�

+ ��a2 sin2 m�

2

�2ur
0�r,��
�2r

�
r=a

+ a sin m�� �ur
1�r,��
�r

�
r=a

+ ur
2�a,��	�2 + ¯ �18�

and similarly for the tangential displacement,

u��r*,�� = 0 = u�
0�a,�� + �a sin m���u�

0�r,��
�r

�
r=a

+ u�
1�a,��	�

+ �a2 sin2m�

2
� �2u�

0�r,��
�2r

�
r=a

+ a sinm�� �u�
1�r,��
�r

�
r=a

+ u�
2�a,��	�2 + ¯ �19�

Requiring the no-displacement boundary condition to be satisfied
at all orders of �, the order-� term in �18� yields

ur
1�a,�� = − a sin m�� �ur

0�r,��
�r

�
r=a

= − a sin m�
 p�� − 1�
4G

+ � p�� − 1�a2

4Gr2 	
r=a
� =

− p

2G
�� − 1�a sin m� �20�

which serves as a boundary condition at r=a for the as-yet un-
known function ur

1�r ,��. Likewise, the order-� term in �19� yields

u�
1�a,�� = − a sin m�� �u�

0�r,��
�r

�
r=a

= − a sin m��0� = 0 �21�

Examination of the general solution for �1, as given by �1�–�6�,
shows that the only terms that yield a sin m� variation for ur

1�r ,��
are those involving A7,m

1 and A8,m
1 . Hence, the first-order displace-

ment functions must have the form

2Gur
1�r,�� =

A7,m
1 �� + m − 1�sin m�

rm−1 +
A8,m

1 m sin m�

rm+1 �22�

2Gu�
1�r,�� =

A7,m
1 �� − m + 1�cos m�

rm−1 −
A8,m

1 m cos m�

rm+1 �23�

Forcing these expressions to satisfy the boundary conditions �20�
and �21� yields

A7,m
1 �� + m − 1�

am−1 +
A8,m

1 m

am+1 = − p�� − 1�a �24�

A7,m
1 �� − m − 1�

am−1 −
A8,m

1 m

am+1 = 0 �25�

the solution to which is

A7,m
1 =

− amp�� − 1�
2�

�26�

A8,m
1 =

− am+2p�� − 1��� − m + 1�
2m�

�27�

Hence, the first-order displacement functions are

2Gur
1�r,�� =

− p�� − 1�am

2�
� �� + m − 1�

rm−1 +
�� − m + 1�a2

rm+1 	sin m�

�28�

2Gu�
1�r,�� =

− p�� − 1�am�� − m + 1�
2�

� 1

rm−1 −
a2

rm+1	cos m�

�29�

Next, we set the coefficient of �2 to zero in expressions �18�
and �19�, to find the boundary conditions for ur

2�a ,�� and u�
2�a ,��.

First, from the coefficient of �2 in �18�, and using �16� for ur
0�r ,��

and �28� for ur
1�r ,��, we find

2Gur
2�a,�� =

ap�k − 1���� − 2� − 2m�� − 1��
4�

�1 − cos 2m��

�30�

where we have used the identity 2 sin2 m�=1−cos 2m� so as to
express the boundary condition as a trigonometric series. Like-
wise, �16�, �19�, and �29� give

2Gu�
2�a,�� =

ap�� − 1��� − m + 1�
2�

sin 2m� �31�

Hence, both ur
2�r ,�� and u�

2�r ,�� will consist of a term that is
independent of �, and a term that varies as cos 2m�. Examination
of the general solution �1�–�6� shows that the second-order dis-
placement functions must therefore have the form
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2Gur
2�r,�� = −

A1
2

r
+ �A5,2m

2 �� + 2m − 1�r−2m+1

+ 2A6,2m
2 mr−2m−1�cos 2m� �32�

2Gu�
2�r,�� = �− A5,2m

2 �� − 2m + 1�r−2m+1 + 2A6,2m
2 mr−2m−1�sin 2m�

�33�

Requiring that the functions given by �32� and �33� satisfy the
boundary conditions �30� and �31� leads to the following two
equations for the Ai,2m

2 coefficients:

ap�� − 1���� − 2� − 2m�� − 1��
4�

�1 − cos 2m�� = −
A1

2

a
+ �A5,2m

2 ��

+ 2m − 1�a−2m+1 + 2A6,2m
2 ma−2m−1�cos 2m� �34�

ap�� − 1��� − m + 1�
2�

sin 2m� = �− A5,2m
2 �� − 2m + 1�a−2m+1

+ 2A6,2m
2 ma−2m−1�sin 2m� �35�

Matching separately the coefficients of the constant term, the co-
sine term and the sine term yield the required three equations that
allow us to solve for the three coefficients:

A1
2 =

− a2p�� − 1���� − 2� − 2m�� − 1��
4�

�36�

A5,2m
2 =

a2mp�� − 1��2m − 3�
8�

�37�

A6,2m
2 =

a2m+2p�� − 1�
16m�

�4�� − m + 1� + �2m − 3��� − 2m + 1��

�38�
The third-order and fourth-order solutions can be found by fol-

lowing this same methodology. Each of these solutions will have
the form given by �5� and �6�, but with only a small number of
non-zero coefficients. These non-zero coefficients are given in the
Appendix . We note here the pattern that only the even-order
terms in the perturbation solution contain non-zero values of A1,
and so the expression for the effective bulk modulus will contain
only even powers of �. However, the even-order terms cannot be
computed without having already computed all lower-order terms,
so the odd terms must be computed, despite the fact that they do
not contribute to the bulk modulus. The fact that the expression
for the bulk modulus contains only even powers of � could have
been anticipated by noting that letting �→−� corresponds to ro-
tating the cavity by one-half of a wavelength. As the far-field
stress is isotropic, a rotation of the cavity cannot alter the bulk
modulus, and so the expression for Keff must be an even function
of �.

4 Effective Bulk Compressibility and Pore Compress-
ibility

To be specific, we consider plane strain, in which case ��
+1� / ��−1�=2�1−	� / �1−2	�. The expression for the effective
bulk modulus given by Eq. �8� can then be written in terms of
compressibility as follows:

C

Ceff
= 1 +

2�1 − 	�
�1 − 2	�

A1�� = − 1;p = 1�
�

Apore

 �39�

where C=1 /K is the bulk compressibility of the host material, and
we have replaced the inclusion area fraction c by the usual symbol
for porosity 
. For small values of 
, equation �39� can be ex-
panded as

Ceff = C −
2�1 − 	�C
�1 − 2	�

A1�� = − 1;p = 1�
�

Apore

 �40�

However, the effective compressibility can also be expressed in
the present notation �exactly� as �24�

Ceff = C + 
Cpc �41�

where Cpc is the compressibility of the pore with respect to the
far-field “confining” pressure. Comparison of �40� and �41� shows
that the pore compressibility is given by

Cpc =
− 2�1 − 	�

G

A1�� = − 1;p = 1��
Apore

�42�

The pore compressibility parameter is of great importance in pe-
troleum engineering, but also provides a convenient means to dis-
cuss the effect of pores on the bulk modulus, as shown by �41�.

An interesting qualitative implication of �42� is that, since the
term A1�−1,1� does not depend on the elastic moduli, the pore
compressibility is always proportional to �1−	� /G, with a dimen-
sionless multiplicative factor that depends only on the shape of the
pore. This result is consistent with the exact solutions found by
Ekneligoda and Zimmerman �9� for a large family of pores having
n-fold rotational symmetry, but we see now that it is completely
general. Indeed, this fact can also be obtained from some of the
recent results of Vigdergauz �25�, if they are translated into the
present terminology of “pore compressibility.”

Returning to our corrugated pore, the pore area can easily be
shown to be given by Apore=�a2�1+�2 /2�. Hence, using �36� for
A1�� , p�, we find, to second order in �,

Cpc =
2�1 − 	�

G

�1 + �4m − 3��2/2�
�1 + �2/2�

�43�

The fourth-order perturbation solution yields

Cpc =
2�1 − 	�

G
�1 + �2�4m − 3�/2 − �4f

�1 + �2/2� 	 �44�

f = � 3

16
−

1

32
m�m + 1��2m + 1� −

�2m − 3�
8

	
−

1

4
�A7,2m

3 �m − 1��m − 2�
am +

A8,2m
3 m�m + 1�

am+2 	
−

m

4
�A5,2m

2 m�2m − 1��m − 1�
a2m +

A6,2m
2 m�2m + 1��m + 1�

a2m+1 	
�45�

where the Ai,2m
2 coefficients are given in the Appendix .

5 Stress Concentration
The stress concentration at the boundary of a hole in a stressed

body is of great engineering interest �4,14�. Givoli and Elishakoff
�18� discussed the stress concentration at the boundary of holes
described by Eq. �11�, as given by their second-order perturbation
solution. We have verified that the stresses obtained from our
second-order solution agree with those found in �18�. However, as
our main interest is in the pore compressibility and the effective
bulk modulus, we will not pursue the issue of stress concentration
any further.

6 Pore Compressibility of Corrugated Pore
We now compare the compressibilities predicted by our two-

term and four-term perturbation solutions with the values obtained
by boundary element calculations, and with some upper and lower
bounds that can be derived. The boundary element calculations
were performed using a code developed by Martel and Muller
�26�, which is a simplified version of the more general two-
dimensional boundary element method code from Crouch and
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Starfield �27� that is based on the displacement discontinuity
method. This code allows us to analyze the problem of a pore of
specified shape in an infinite elastic region, with prescribed
stresses at infinity, and requires discretization only of the pore
boundary. Typically, about 300 boundary elements were needed to
obtain a converged solution.

An upper bound on the pore compressibility parameter can be
obtained by starting with the fact that if the actual pore is replaced
by a pore defined by the smallest possible circumscribed circle,
which has radius a�1+��, the overall bulk compressibility of the
body cannot decrease, since removal of solid material cannot
stiffen the body �28�. Considering a large body of area A contain-
ing only one pore, we can then say, from �41�, that

C +
Apore

A
Cpc�pore� � C +

Acircumscribed circle

A
Cpc�circle� �46�

However, Cpc�circle�=2�1−	� /G, Apore=�a2�1+�2 /2�, and
Acircle=�a2�1+��2, so we find that

Cpc�pore� �
�1 + ��2

�1 + �2/2�
2�1 − 	�

G
�47�

The Hashin-Shtrikman upper bound on the effective bulk
modulus of a two-dimensional porous body �29� can be used to
show that the pore compressibility of our irregular pore cannot be
less than 2�1−	� /G. This is equivalent to stating that no pore can
be stiffer than a circular pore. A different lower bound on the
compressibility of our irregular pore could be found by using an
argument based on the largest possible inscribed circle, which has
radius a�1−��. However, this lower bound would be lower than
2�1−	� /G, and thus is not useful. Hence, the normalized com-
pressibility of our corrugated pore is bounded as follows:

1 �
GCpc

2�1 − 	�
�

�1 + ��2

�1 + �2/2�
�48�

As we are, by definition, only interested in small values of �, one
can say roughly that the normalized pore compressibility must lie
between 1 and 1+2�.

The two-term and four-term perturbation expressions are plot-
ted in Figs. 2–4 as functions of �, for the values m=8, 16, and 32.
Also plotted are the upper and lower bounds, and the values com-
puted using the boundary element method. As the influence of
roughness on compressibility is of second order, the compressibil-

ity lies close to the lower bound for very small values of �. How-
ever, as � increases, the compressibility moves closer to the upper
bound. Moreover, the difference between the exact value and the
upper bound becomes smaller as the number of corrugations �m�
increases. As the upper bound corresponds to the case in which
the small bumps of solid material have been removed, this shows
that, particularly as m increases, these small bumps provide no
stiffness to the pore. Although one might think that this result
could have been anticipated, we point out that the stress concen-
tration increases drastically with m and � �18�, and it has been
frequently asserted that the pore compressibility correlates with
the stress concentration �30,31�. However, our results show that as
m increases, the pore compressibility approaches an upper bound
that is independent of m. Hence, this supposed correlation be-
tween pore compressibility and stress concentration, which had
been inferred from the solutions for ellipsoidal and spheroidal
pores, has no general validity whatsoever.

Fig. 2 Pore compressibility as a function of the roughness
amplitude, for the case m=8

Fig. 3 Pore compressibility as a function of the roughness
amplitude, for the case m=16

Fig. 4 Pore compressibility as a function of the roughness
amplitude, for the case m=32
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As expected, the two-term perturbation expression agrees
closely with the numerical values for a certain range of �, and
then rapidly becomes unrealistically large, exceeding the upper
bound. Using the compressibility predicted by the four-term solu-
tion extends the range of accuracy by about a factor of 2 in �. For
example, for m=8, the two-term solution is quite accurate until
about �=0.07, whereas the four-term solution is accurate until �
=0.14. The range of accuracy decreases as m increases, as was
found by Givoli and Elishakoff �18� for the stress concentrations.
Roughly, the four-term solution is accurate until a critical value of
about �*=1 /m, beyond which its accuracy deteriorates rapidly.

Although this may seem like a severe limitation on the useful-
ness of the perturbation approach, in practice it is not, as we now
show. There are m sine waves of the corrugations along the cir-
cumference of the nominal circle, which has a circumference of
2�a, and so the half-wavelength of each bump is �a /m. The
change in radius that occurs over this half-wavelength is 2a�. If
we make the reasonable assumption that the change in radius does
not exceed the half-wavelength �otherwise, the corrugations
would look like thin spikes�, we find that � is restricted to be less
than � /2m. Thus, it seems that the range of accuracy of the pore
compressibility predicted by our fourth-order perturbation solu-
tion probably covers most cases of practical interest.

7 Summary and Conclusions
The boundary perturbation method has been used to determine

the displacements and stresses around a nearly circular rigid in-
clusion whose boundary is described by r=a�1+� sin m��, and
which is subjected to hydrostatic stress at infinity. The solution
has been obtained up to the fourth order in �. The corresponding
solution of a cavity under hydrostatic loading was obtained using
the Dundurs correspondence principle. It was verified that the
second-order solution gives stress concentrations along the cavity
boundary that agree with those obtained in �18�.

From these solutions, we obtained expressions for the effective
bulk modulus of a body that contains a dilute distribution of these
inclusions �or cavities�. For the case of a cavity, we also obtained
the pore compressibility parameter Cpc. The pore compressibility
of the corrugated circular pore exceeds that of a perfect circle by
a term of order �2. This is in contrast to the stress concentration
factor, which differs from those of a circle by a term of order �.
We conclude that small amounts of roughness have a negligible
effect on the compressibility. In a sense, this follows directly from
the bounds described in Sec. 6. However, the upper bound of the
pore compressibility differs from the lower bound by a term of
order �, whereas the actual pore compressibility was found to
deviate from the lower bound �i.e., the compressibility of a circle�
by order �2. Hence, although roughness causes the pore compress-
ibility to increase, the effect is much less than might have been
inferred, for example, by taking the mean value of the upper and
lower bounds.

Our results should be useful in attempts to estimate elastic
properties of porous materials from images of the pore space �32�,
as they provide an estimate of the magnitude of roughness that
can safely be ignored when analyzing the images. One encourag-
ing implication of our results is that very high levels of magnifi-
cation may not be needed. This is similar to what has been found
when using image of pores to estimate the permeability of porous
rocks, as small-scale roughness also has little effect on the hydrau-
lic resistance in the laminar range �6�.

APPENDIX
A The non-zero coefficients required for the first-order solution

are

A7,m
1 =

− amp�� − 1�
�

�A1�

A8,m
1 =

− am+2p�� − 1��� − m + 1�
�m

�A2�

The non-zero coefficients required for the second-order solution
are

A5,2m
2 =

a2m�� − 1��2m − 3�
8�

�A3�

A6,2m
2 =

a2m+1�� − 1�
4�m

��� − m + 1� +
�2m − 3��� − 2m + 1�

4
	
�A4�

A1
2 =

− a2p�� − 1���� − 2� − 2m�� − 1��
4�

�A5�

The non-zero coefficients required for the third-order solution are

A7,m
3 =

− am−1G�Tr,m
3 + T�,m

3 �
�

�A6�

A8,m
3 = am+1G� �� + m − 1��Tr,m

3 − T�,m
3 �

�m
−

2Tr,m
3

m
	 �A7�

A7,3m
3 =

− Ga3m−1�Tr,3m
3 + T�,3m

3 �
�

�A8�

A8,3m
3 =

2a3m+1G

3m
� �� + 3m − 1��Tr,3m

3 + T�,3m
3 �

2�a3m−1 − Tr,3m
3 	 �A9�

Tr,m
3 =

1

4G
�A5,2m

2 �� + 2m − 1��2m − 1�
a2m−1 + A6,2m

2 2m�2m + 1�
a2m 	 + a��

− 1�
3

16G

1 −

1

2�
�m�m − 1��� + m − 1� + �m + 1��m + 2���

− m + 1��� + a
�� − 1�

8G
� �� − 2� − 2m�� − 1�

�
	 �A10�

T�,3
3 =

1

4G
�− A5,2m

2 �� − 2m + 1��1 − 2m�
a2m−1 − A6,2m

2 2m�2m + 1�
a2m 	

+
a

16G�
��� − 1��� − m + 1��2m + 1�� �A11�

Tr,3m
3 = −

1

4G
�A5,2m

2 �� + 2m − 1��2m − 1�
a2m−1 + A6,2m

2 2m�2m + 1�
a2m 	

+ a�� − 1�
1

16G

1 −

1

�
�m�m − 1��� + m − 1� + �m + 1��m

+ 2��� − m + 1��� �A12�

T�,3m
3 =

1

4G
�A5,2m

2 �� − 2m + 1��1 − 2m�
a2m−1 + A6,2m

2 2m�2m + 1�
a2m 	

−
a

16G�
��� − 1��� − m + 1��2m + 1�� �A13�

The non-zero coefficients required for the fourth-order solution
are

A5,2m
4 =

Ga2m−1�T�,2m
4 − Tr,2m

4 �
�

�A14�
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A6,2m
4 =

Ga2m+1

2m
�− 2Tr,2m

4 + �T�,2m
4 − Tr,2m

4 �
�� − 2m + 1�

�
	
�A15�

A5,4m
4 =

Ga4m−1�T�,4m
5 − Tr,4m

5 �
�

�A16�

A6,4m
4 =

Ga4m+1

4m
�− 2Tr,4m

4 +
�� − 4m + 1�

�
�T�,4m

4 − Tr,4m
4 �	

�A17�

A15
m =

− 3a2

32G
�� − 1�p +

a2

64G

 p�� − 1��m + 1�

�
��m − 1�m�� + m

− 1� + �m + 2��m + 3��� − m + 1���
+

a2p�� − 1�
16G

� �� − 2� − 2m�� − 1�
�

	
+

a

16G
�A5,2m

2 �� + 2m − 1��2m − 1��2m�
a2m−1

+ A6,2m
2 2m�2m + 1��2m − 2�

a2m+3 	
−

a

4G
�A7,2m

3 �� + m − 1��m − 1�
am−1 + A8,m

3 m�m + 1�
am+1 	 �A18�

Tr,2m
4 =

ap�� − 1�
16�

��� − 2� − 2m�� − 1��

+
p�� − 1�a

8

ap�� − 1��m + 1�

6
��m − 1�m�� + m − 1� + �m

+ 2��m + 3��� − m + 1�� − 1� −
1

4
�A7,m

3 �� + m − 1��m − 1�
am−1

+ A8,m
3 m�m + 1�

am+1 	 +
1

4
�A7,3m

3 �� + 3m − 1��3m − 1�
a3m−1

+ A8,3m
3 3m�3m + 1�

a3m+1 	 −
a2

8
�A5,2m

3 �� + 2m − 1��2m − 1�2m

a2m+1

+ A6,2m
3 2m�2m + 1��2m + 2�

a2m+3 	 �A19�

Tr,4m
4 =

1

32

p�� − 1�a −

ap�� − 1��m + 1�
6�

��m − 1�m�� + m − 1�

+ �m + 2��m + 3��� − m + 1���
+

1

16
�A5,2m

2 �� + 2m − 1��2m − 1��2m�
a2m−1

+ A6,2m
2 2m�2m + 1��2m − 2�

2a2m−3 	
− a�A7,3m

3 �� + 3m − 1��3m − 1�
a3m−1 + A8,3m

3 3m�3m + 1�
a3m+1 	

�A20�

T�,2m
4 = −

p�� − 1�a�� + m − 1�
96G�

��1 − m�m�m + 1� + �m + 1��m + 2�

��m + 3�� −
a2

8G
�A5,2m

3 �� − 2m − 1��1 − 2m�2m

a2m+1

+ A8,m
3 2m�2m + 1��2m + 2�

a2m+3 	
−

a

4G
�A7,m

3 �� − m − 1��1 − m�
am + A8,m

3 m�m + 1�
am+2 	

+
a

4G
�A7,3m

3 �� − 3m − 1��1 − 3m�
a3m + A8,3m

3 3m�3m + 1�
a3m+2 	

�A21�

T�,4m
4 =

p�� − 1�a�� + m − 1�
192G�

��1 − m�m�m + 1� + �m + 1��m + 2�

��m + 3�� +
a2

16G
�A5,2m

3 �� − 2m − 1��1 − 2m�2m

a2m+1

+ A6,m
3 2m�2m + 1��2m + 2�

a2m+3 	
−

a

4G
�A7,3m

3 �� − 3m − 1��1 − 3m�
a3m + A8,3m

3 3m�3m + 1�
a3m+2 	

�A22�
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A Momentum Transfer
Measurement Technique Between
Contacting Free-Falling Bodies in
the Presence of Adhesion
The present paper is aimed at investigating the dynamics of release of objects in free-
falling conditions typical of space applications. In the presence of surface interaction
forces, a quick separation of the released from the constraining body will result in a
momentum transfer, provided that the inertial forces exceed the maximum attractive
force. The release conditions as well as the related parameters affecting the momentum
acquired by the released body through the adhesion rupture play a fundamental role.
Therefore, an analytical model has been set up to predict the imparted momentum in the
case of conservative interaction forces. Furthermore, an experimental technique aimed at
measuring the momentum transfer has been analyzed. Particular attention has been
placed on the capability to accurately reproduce the stress status on the contact patch, on
the noise sources affecting the measurement, and on the performances of a noise optimal-
filtering technique in terms of achievable measurement resolution.
�DOI: 10.1115/1.2755104�

Keywords: momentum transfer measurement, impulse, surface forces, noise filtering

1 Introduction
The measurement of small impulses is relevant and necessary

in various fields of science and engineering. Although the mea-
surement of impulses of the order of several Newtons per second
is common, there is an increasing demand for the measurement of
impulses of the order of micro-Newtons per second in many in-
dustrial and research fields, such as space applications, process
monitoring, and crash testing. For instance, in space propulsion
studies, the exact knowledge of the impulse imparted by the
thrusters to an orbiting satellite is needed for orbit maintenance,
repositioning, and attitude control �e.g., �1–8��.

In the applications mentioned, the measured impulse is origi-
nated by a noncontact force, which may be electromagnetic or
inertial �accelerated ions or gas molecules�. The measurement of
these kinds of impulses takes advantage of the fact that noncontact
forces, although active between two bodies, are not affected by
the way such bodies are constrained. Conversely, the present work
deals with an application where the measurement of impulse con-
cerns contacting bodies.

In the space environment, the precise release of bodies in outer
space implies the contact with some kind of caging devices, which
are deputed to the constraining of the object to be released during
the launch phase. Therefore, the subsequent in-orbit release in-
volves the sudden rupture of adhesive forces with consequent
transfer of momentum. The breaking of adhesive junctions be-
tween contacting bodies, although of slight order of magnitude
�from nano- up to milli-Newtons�, can be promoted in space ap-
plications neither by environmental factors, such as the gravity
field, nor by surface contamination caused by exposure to the
atmosphere, nor by acoustic noise propagated by the air, nor by
inertia forces due to ground microseismic movement. The un-
avoidable momentum transferred to the released body may cause

too high residual velocities in comparison to the required release
conditions. A meaningful example of these issues is given by the
scientific space mission LISA �Laser Interferometer Space An-
tenna� �9�. The aim of this ESA NASA joint mission is the first
in-flight revealing of gravitational waves, which will be detected
by means of laser interferometer arms formed among three orbit-
ing satellites. The sensing elements of the gravitational waves,
constituting the end mirrors of the interferometer arms, will be
cubic masses located within the satellites. During the experiment,
the test masses will be set in free flight �see Fig. 1�.

Unfortunately, the test masses need to be firmly secured to their
housings as long as they are subjected to the Earth’s gravity or to
the spacecraft launch loads, in order to avoid any collision with
the surrounding instruments. The constraining action against the
launch loads is performed by the caging mechanism subsystem
�CMSS�, which applies large preloads on the filleted corners �see
Fig. 2�a�� through four fingers �10�. A direct release to free-falling
conditions would not be possible due to the unavoidable cold
welding junctions arising at the mating surfaces between the test
mass and the fingers. Once the spacecraft orbit is commissioned,
the test mass is handed over to the grabbing positioning and re-
lease mechanism �GPRM�, which has the function to grab the test
mass and center it in the housing. This function is performed by
applying a lower preload through dedicated surface pairs �Fig.
2�b�� that are thus preserved from strong cold welding and fretting
phenomena because the test mass is no longer subject to high
inertial loads. The last step is to retract the grabbing fingers and
engage the test mass only through two small tips, which apply a
minimum preload on a dedicated surface inside the test mass re-
cess �see Fig. 2�c��. The release is carried out by quickly retracting
the release tips.

After the release, only a limited �micro-Newton scale� force and
torque authority is available on the test mass supplied by a capaci-
tive actuation system �11,12�. It has been calculated that the re-
sidual velocity of the test mass must be �5 �m /s; otherwise, the
capacitive actuation will not be able to catch up and control the
test mass in the available gaps. The release function constitutes a
potential single-point failure of the mission because, if the test
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mass is not set in free floating conditions, neither scientific mea-
surements nor a technology demonstration may be performed. It is
now clear that the exact measurement of the momentum imparted
to the test mass due to adhesive interactions plays a crucial role
for the verification of compliance of both the release mechanism
and procedure with the requirements for a successful release.

The present paper is aimed at designing a ground-based labo-
ratory experiment for the measurement of the momentum transfer
during the release of a nominally free-falling physical body sub-
jected to adhesive interactions. Accordingly, the main objectives
of this paper are to �i� provide a critical assessment of the release
conditions as well as the related parameters affecting the dynam-
ics of the release, �ii� describe the obtained results in terms of
their influence on the LISA scientific experiment, �iii� design an
experiment representative of the in-orbit release for the measure-
ment of the impulse imparted to the detached object, which shall
be isolated from both the pervasive gravity field and the labora-
tory disturbances, �iv� discuss the main sources of noise disturbing
the experiment, and �v� analyze the performances of a particular
noise optimal-filtering technique in terms of achievable measure-
ment resolution.

2 In-Flight Release Configuration
The considered configuration for the investigation of the in

flight dynamics of the release of two objects interacting with a
relative position-dependent force is schematized in Fig. 3. Body 1
represents the plunger performing the test mass release, whereas
body 2 is the test mass �TM�. The two bodies are initially at rest
and in contact. From the point of view of their dynamic behavior,
both objects are considered as point particles. A force fe is applied
to the plunger in order to separate it from the test mass. For the
sake of simplicity, the entire discussion is just in one dimension,
the x-axis, but it can be generalized to the three-dimensional case.
x1 and x2 are the coordinate of the plunger and of the test mass,
respectively, and r is the difference of their coordinates; r=0 rep-
resents the initial contact between the bodies.

In the literature, adhesive interactions, whatever their origin
�van der Waals, electrostatics, Casimir, etc.�, are treated as a
position-dependent force �13,14�. Such an approach neglects non-
conservative interactions that, in the context of the release of the
test mass from the caging device, may contribute to the trans-
ferred momentum. The same approach, however, enables one to
characterise the conservative part of the interacting force between
the surface pairs. It is possible to associate a potential energy U to
the adhesion force according to

f�r� = −
�U

�r
�1�

where r is a separation coordinate that measures the relative mo-
tion of the surfaces in contact. The force f�r� is then considered as

Fig. 1 Constellation of three orbiting satellites realizing the
LISA experiment. Each satellite hosts two free-floating test
masses, which are the end mirrors of laser interferometer
arms.

Fig. 2 Release procedure of the LISA test masses: „a… The
caging mechanism subsystem „CMSS… constrains the test
mass through four fingers before the launch of the satellite. „b…
The test mass is handed over to grabbing positioning and re-
lease mechanism „GPRM…, once the satellite has reached the
orbit. „c… The grabbing finger is separated from the test mass
by a release dedicated tip, which is in turn quickly separated
from the test mass performing the final release.

Fig. 3 Schematics of the system considered in the analysis of
the release dynamics. Both the test mass „the cube on the
right… and the plunger „the cylinder on the left… are considered
pointlike particles. Only the motion along x is considered. The
force fe is applied to the plunger in order to pull it out of
contact.
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a well-defined function of r, though the specific shape may de-
pend on the past history of the contact. Nonconservative interac-
tions introduce more complex dependence of the transferred mo-
mentum on plunger motion. The experimental campaign, based on
the measured technique described later in this paper, is expected
to clarify how the actual adhesion phenomena deviate from the
ideal conservative case presented.

The assumed initial status of the test mass and plunger system
for the in-flight release foresees the two bodies in contact on a
small surface, where the adhering forces are balanced by the Hert-
zian stresses. A local reference frame �see Fig. 4� is located at the
center of the contact patch and defined by the normal �n� to the
mating surfaces, a tangential axis �t� parallel to the gravity axis,
and another tangential axis �s� defined by the cross product of the
above unit vectors.

In the nominal conditions, the TM center of mass lies on the
n-axis, which also coincides with the plunger translational axis.
When the plunger is retracted, the test mass acquires momentum
along n. The actual conditions are expected to differ from the
nominal ones. If the TM center of mass does not lay on the
plunger translational axis, due to axis misalignment and/or eccen-
tric contact point, the adhesive force impulse also generates TM
rotational momentum. Any TM center of mass misalignment with
respect to the force affects the mechanical impedance of the test
mass as seen by the force itself, as shown by the following for-
mula:

ẍP

F
=

1

m
+

e2

J
�2�

where e is the misalignment, m the TM mass, J the TM moment
of inertia around the center of mass, and P the contact point. A
1 mm misalignment results in a 0.28% increase of the mechanical
impedance; therefore, such an effect is negligible. The impact on
the adhesive force of a local relative rotation due to a center-of-
mass misalignment will result in a different direction of plunger
retraction. Figure 5 shows that, in the case of a spherical plunger

head, the contact point moves with respect to the plunger, but the
different contact situation may be investigated by considering a
retraction direction not aligned with the direction normal to the
contact surface. A variable adhesive pressure distribution on the
contact patch may cause some moment of the adhesive forces, as
shown in gray in Fig. 6�a�. A conservative asymmetry of the ad-
hesive pressure is assumed with the triangular distribution shown
in Fig. 6�b�. In this case, the arm length of the force resultant
would be d /6. Considering that the contact patch dimension is
expected to be of the micrometer level, the actual center of mass
misalignment �expected to be at least one order of magnitude
larger� plays a dominant role in the angular momentum transfer.
This means that the TM angular momentum transferred by the
momentum of the adhesive force resultant is assumed negligible
in the domain of the contact patch. Consequently, the transferred
linear and angular momentum may be adequately described by a
force impulse located at the actual position of the contact patch.

3 Dynamics of the Release
With the approximations enunciated in the preceding section,

the dynamics of the system composed of the two point masses m1
and m2 is described by

m1ẍ1 = −
�U��x1 − x2��

�x1
+ fe

m2ẍ2 = −
�U��x1 − x2��

�x2
�3�

The dynamics is easier to discuss if one switches to the “two-
body” representation, using r and the coordinate of the center of
mass as the dynamical coordinates

r̈ = − � 1

m1
+

1

m2
� �U��x1 − x2��

�x1
+

fe

m1
→ �r̈

= −
�U�r�

�r
+

m2

m1 + m2
fe �4�

�m1 + m2�ẍcm = fe �5�
where the reduced mass is defined by

� =
m1m2

m1 + m2
�6�

and the coordinate of the center of mass

Fig. 4 In-flight release conditions of contacting free-floating
bodies

Fig. 5 Contact surface rotation due to center of mass mis-
alignment during bodies separation

Fig. 6 „a… Possible adhesive pressure distribution with result-
ant momentum and „b… triangular adhesive pressure
distribution
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xcm =
m1x1 + m2x2

m1 + m2
�7�

The inverse transformation is

v1 = vcm +
m2

m1 + m2
ṙ

v2 = vcm −
m1

m1 + m2
ṙ �8�

In the following, two limiting cases for the interaction force will
be considered: �i� impulsive force of given total impulse and �ii�
constant force until release.

3.1 Case 1: Impulsive Force of Given Total Impulse. If
fe�t� consists of a pulse of duration tmax so short that the motion of
both test mass and plunger may be neglected during the time of its
action, then the problem reduces to that of a particle in a potential
well �U with initial nonzero velocity. We call I the impulse of the
force

I =�
0

tmax

f�t�dt �9�

Once the equivalent particle of Eq. �3� is well outside of the
potential well, its effective kinetic energy is

1

2
�ṙ2 =

1

2
�� I

m1
�2

− �U �10�

while the center of mass moves with velocity

vcm =
I

m1 + m2
�11�

From Eqs. �10� and �11�, one gets the TM release velocity

v2 =
I

m1 + m2
−

m1

m1 + m2

	� I

m1
�2

−
2

�
�U �12�

or the TM kinetic energy at release

1

2
m2v2

2 =
1

2
m2� I

m1 + m2
�2
1 −	1 −

2m1
2

�

�U

I2 �2

�13�

Equation �12� can be expanded in series of the �small� param-
eter �

� =
2m1

2

�

�U

I2 �14�

as

1

2
m2v2

2 =
1

2
m2� I

m1 + m2
�2
�2

4
+

�3

8
¯ � �15�

Thus, if ��1, Eq. �15� gives

1

2
m2v2

2 =
1

2

m1

m2

m1�U2

I2 =
1

4

m1

m2

�U2

To
�16�

where on the right the kinetic energy To has been introduced

To =
1

2

I2

m1
�17�

that the free plunger would possess if there was no adhesion at all.
It is worth noting that

� =
m1 + m2

m2

�U

To
�

�U

To
�18�

Thus, the condition for all this to hold is that �U�To, a condition
that should be easy to achieve just by design of the plunger ac-
tuator.

3.2 Case 2: A Constant Force Until Release. It is assumed
that the plunger is actuated with a constant force fe= fo until the
separation reaches r=rco �see Fig. 7�. At any time during the pro-
cess, the kinetic energy of the equivalent particle in Eq. �4� is
given by

1

2
�ṙ2 = − U�r� +

m2

m1 + m2
for �19�

so that the final kinetic energy is

1

2
�ṙfin

2 = − �U +
m2

m1 + m2
forco �20�

Note that in Eq. �19� we have chosen U�0�=0. Meanwhile, the
center of mass moves as

vcm =
fo

m1 + m2
t �21�

with t=0 when the force is turned. In order to calculate the value
of vcm when r has reached rco, it is necessary to know then how
long it takes to do so. This can be bounded as follow. One can
rewrite Eq. �19� as

ṙ =	 2

�

 m2

m1 + m2
for − U�r�� �22�

and then

�
0

rco 1

	 2

�

 m2

m1 + m2
for − U�r��dr = tco �23�

where tco is the unknown time to be found out. Equation �23�
assumes the form

	2m1rco

fo

1

2�
0

1
1

	
x −
U�r�

m2/�m1 + m2�forco
�dx

= to

1

2�
0

1
1

	�x − z�x��
dx = tco �24�

once the following items have been defined:

Fig. 7 The concept of the binding energy representing adhe-
sion: when plunger and TM are at rest, r is taken as r=0 and U
is at a minimum. The total binding energy is �U. In some of the
calculations, we have to choose an arbitrary cutoff point where
the force becomes negligible. The coordinate of this cutoff
point is called rco.
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x =
r

rco
, to =	2m1rco

fo
and z�x� =

U�xrco�
m2/�m1 + m2�forco

�25�

It should be noted that to is the time the “free” plunger would take
to reach rco and, as rco is of order �1 �m, i.e., the force is im-
pulsive in any case. Now, the following considerations can be
drawn:

• As U�r� is a never decreasing function of r, so is z of
x :�U /�r ,dz /dx�0

• One defines To= forco, which, as before, is the kinetic energy
the plunger would acquire if there were no test mass or no
adhesion. It is assumed, and checked later that this can be
done, that To��U in which case z�x��1

• In order to pull the plunger away, the force must overcome
the maximum adhesion force with some substantial margin.
Thus, ��U /�r�max� fe. One defines

� =
�m1 + m2�

m2fo
� �U

�r
�

max

�26�

� is expected to be a small number, probably �0.01. As a conse-
quence,

z�x� =�
0

x
dz

dx�
dx� 	 �x �27�

and

1
	�x − z�x��

	
1

	1 − �

1
	x

�28�

Considering all this, one gets

tco 	
1

	1 − �
to � �1 +

�

2
�to �29�

If � is entirely neglected, then the test mass moves with velocity

v2 = vcm�tco� −
m1

m1 + m2
ṙfin =

fo

�m1 + m2�
	2m1rco

fo

−
m1

m1 + m2
	 2

�
� m2

m1 + m2
forco − �U� �30�

and has then a kinetic energy

1

2
m2v2

2 =
m2m1To

�m1 + m2�2
1 −	�1 −
�m1 + m2��U

m2To
��2

�31�

By defining again �= ��m1+m2��U� /m2To a small number, one
gets the same result as in Eq. �16�

1

2
m2v2

2 �
1

4

m1

m2

�U2

To
�32�

4 Dynamical Requirements for the LISA Test Mass
Release

The leading constraint determining the successful release of the
LISA test mass is that the kinetic energy imparted to the test mass
by the release device is less than the maximum kinetic energy that
can be taken out of the test mass by the electrostatic suspension
system. This energy has been estimated to be Tmax�2.5

10−11 J �9�, corresponding to a maximum linear momentum
equal to about 1
10−5 kg·m /s in the case of a 2 kg heavy TM.
From Eqs. �16� and �32�, it can be calculated that the depth of the
adhesion potential energy well �U must be less than

�U 	 2	m2

m1
T0Tmax �33�

As discussed in Sec. 2.2, the force applied to the plunger must
overcome the maximum adhesion force with some substantial
margin

� �U

�r
�

max

� fe �34�

Moreover, in order Eq. �33� to be valid, it must be guaranteed that

�U �
m2

m1 + m2
T0 �35�

It is worth noting that all the requirements defined in Eqs.
�33�–�35� involve the depth of the energy well �U and the maxi-
mum adhesion force. The leading requirement for �U and To
depends on the specific adopted solution and may be stated either
by Eq. �33� or Eq. �35�. The most interesting quantity appears to
be �U in Eqs. �16� and �32�. In a measurement where the plunger
is quickly pulled away, one can use the result of Eq. �16� or Eq.
�32� to derive that the transferred momentum is

p2

2m2
�

1

4

m1

m2

�U2

T0
→ p =

�U

	2v0

�36�

where v0 is the plunger velocity corresponding to the kinetic en-
ergy T0. The transferred momentum is thus independent of the
mass value and is a direct measure of �U provided that v0 is
reasonably well known. Noteworthy, v0 can be modulated to some
extent to increase the sensitivity and test the model. This result is
of particular practical interest because it implies that, under the
aforementioned assumptions, the transferred momentum can be
estimated on the basis of the knowledge of the sole interaction
potential energy �U, which can be measured with common ex-
perimental techniques, such as nanoindenters, atomic force micro-
scopes, and surface force apparatuses �see, for example, �13,14��.
If, however, the release is also affected by nonconservative inter-
actions �such as friction or cold welding phenomena �15,16� act-
ing between the contacting bodies�, then such an energetic ap-
proach is no longer valid and the momentum transfer has to be
directly measured. This issue will be discussed in the following
section.

5 Measurement of the Momentum Transfer

5.1 Conceptual Measurement Configuration. The precise
measurements of impulses performed by other authors �1–8� were
critical, mainly for two reasons. First, the force impulse needs to
be entirely converted into momentum; therefore, any other force
acting in the same direction on the body subjected to the impulse
must be minimized. Second, the momentum must be identified by
the measurement of the resulting motion of the body that is af-
fected by noise sources and by the unavoidable constraining
forces.

5.1.1 Suspension System. The conversion of impulse into mo-
mentum may be guaranteed by a suspension system that mini-
mizes the risk of any impulsive constraining force in the direction
of the impulse to be measured. Constraining forces acting on
longer time scales let the body develop a detectable motion from
which the impulse may be identified. Suspension systems based
on a simple pendulum �1�, linear rail �1�, and torsion pendulum
�1,3–7� have been adopted to provide a weakly constrained axis,
for the measurement of the steady and impulsive force exerted by
thrusters for spacecraft applications. In the aforementioned appli-
cations, the presence of a single weakly constrained degree of
freedom does not limit the measurement, as long as the impulsive
force is a noncontact force and reasonably aligned with the “soft”
axis. On the contrary, the impulsive force due to adhesion rupture
is influenced by the complete three-axial stress status at the con-
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tact patch that depends on how both contacting bodies are con-
strained to the ground. This means that the body subjected to the
adhesive impulse �i.e., the body to be released� needs to be weakly
constrained not only in the direction along which the plunger is
retracted, but also along the orthogonal directions.

Neglecting, for the moment, the stiff constraint along the verti-
cal direction, many different solutions provide a suitable inertial
isolation along two axes, and their macroscopic dynamics may be
approximated by that of a low-damped simple pendulum, charac-
terized in the small-displacement range by a length equal to the
radius of curvature of the center of mass trajectory �for instance,
Roberts linkage �17�, Scott–Russel linkage �18��. On the basis of
these considerations, the conceptual model of the simple pendu-
lum has been chosen for the inertial isolation system in order to
investigate the possible performance of the transferred momentum
measurement experiment. As long as the pendulum length is com-
patible with the typical height of a laboratory ceiling �i.e., meter
scale�, the preferred practical implementation is the simple pen-
dulum characterized by easily determinable dynamic properties
�quality factor and length� and still providing good isolation from
gravity and microseismic noise. Accordingly, the basic concept of
the measuring apparatus, illustrated in Fig. 8, is to suspend both
the test mass and the release plunger from two pendulums. A
position sensor detects the weakly damped oscillation of the test
mass due to the momentum transferred on pulling the plunger
away. Larger pendulum lengths �i.e., tens of meters scale� are still
achievable in a laboratory environment through the adoption of
inertial isolations based on the aforementioned mechanisms. The
drawback, however, is a much more difficult practical realization
and a more complex dynamical behavior.

5.1.2 Identification of the Transferred Momentum. The identi-
fication of the momentum through the measurement of the result-
ing motion of the suspended body may focus, in principle, on the
measurement of its velocity at the instant after the impulse appli-
cation �3�. However, exact velocity measurements are hindered by
background noise, electromagnetic interference, and structural
harmonics �1�. An alternative technique, valid when the impulse
width is much smaller than the oscillator period, measures the
transferred momentum through the maximum displacement of the
suspended body �1,5,7�, which is approximately proportional to
the impulse. This solution has given good results but is still af-
fected by the noise superimposed on the few samples needed to
identify the equilibrium position and the maximum displacement.
A more complex approach is also presented in Ref. �3�, where,
after the identification of the damped oscillator characteristic pa-
rameters �resonant frequency, damping ratio, and suspended
mass�, the force impulse is obtained by fitting the measured mo-
tion with the typical damped oscillator response, and the noise
effect is somehow averaged on the whole data set. Another tech-
nique focuses on the time-resolved motion �7�, allowing the ap-
plied impulsive force to be reconstructed as a function of the time,
with no restriction on the impulse widths as compared to the os-
cillator period. This method, however, is sensible to the noise
present in the readout signal and accurate filtering is necessary
prior to data processing.

In the present application, we propose to process the time-
resolved motion of the damped oscillator through an optimal filter
in order to measure the transferred momentum. Qualitatively, the
role of the optimal filter is to extract the momentum from the data
stream by enhancing the expected signal and averaging the noise,
giving a decreasing weight to the samples as they lose information
on the quantity and become dominated by noise. Details will be
clarified in Sec. 5.4.

5.2 Measurement Basic Requirements. The initial condi-
tions for the experiment, foresee the test mass and the plunger set
into contact as shown in Fig. 8. In such a configuration, however,
the stress status on the contact patch may be, in principle, far
different in the ground experiment from the in-flight conditions.
The in-flight release takes place with an unconstrained test mass,
and, for equilibrium, shear stress at the contact patch is allowed
neither along the t-axis nor along the s-axis. In the ground experi-
ment �see Fig. 9�, both the test mass mock-up and the plunger
mock-up need to be suspended with some constraining stiffness to
ground, named Kn, Kt and Ks. There are two main reasons for
keeping the constraining stiffness to the lowest possible value,
which will be addressed in the following sections.

5.2.1 Stress Status at the Contact Patch. In the ground-based
experiment, the approach of the plunger mock-up to the test mass
mock-up must be performed by actuating some suspending points,
named in Fig. 9, N1, S1, and T1. Because of the constraining
stiffness, any positioning error of the suspending points with re-
spect to the zero contact load between the two bodies causes pre-
loading of the contact patch, both in compression �point N1 moved
forward after contact� and shear �points S1 and T1 moved forward
after contact�. Particular attention is paid to the stress status on the
contact patch, because the interface surfaces undergo tribological
conditions that may originate cold welding phenomena �15,16�.
This occurs by bonding of the contacting bodies, whose separation
involves the fracture of the bonding junction. Since all stress com-
ponents acting on the junction contribute to its fracture �predict-
able by an appropriate three-axial failure criterion�, the presence
of shear stress in the ground-based experiment may help the rup-
ture of adhesion and leads to an underestimation of the impulse
occurred at the separation in comparison to the in-flight
conditions.

In the proposed setup, owing to the pendulum suspension, both
Kn and Ks stiffness are low enough so that a positioning error of
the suspending point along n and s-axes induces a negligible pre-

Fig. 8 The concept of the momentum transfer measurement
configuration: two pendulums with nominally equal lengths
representing the TM and the plunger, respectively. A position
sensor detects the motion of the TM due to the momentum
transferred upon pulling the plunger away. The suspension of
the pendulum is only conceptual.
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loading force on the contact patch. On the contrary, a positioning
error along the t-axis may originate shear stress. A worst-case
situation is exemplarily illustrated in Fig. 10, where it is assumed
that the surface topography of the TM �schematically depicted as
a step in Fig. 10�a�� is able to bear the plunger weight once in
contact with the TM, so that the suspension fiber becomes un-
loaded �Fig. 10�b��. During the following release, the gravity,
which is not present in flight conditions, contributes to the fracture
of the adhesive junction.

The risk of a gravity-aided adhesion rupture is first limited by
adopting a very light plunger mock-up, that is represented by a
millimeter-order diameter sphere. Second, the tension on the
plunger mock-up suspending wire is measured by a load cell in
order to monitor any variation of the vertical force with respect to
the weight during the approach to the test mass mock-up.

5.2.2 Force Impulse Direction. In the nominal ground experi-
ment setup, the momentum transfer takes place along the n-axis of
the TM mock up, along which the constraining stiffness Kn is
designed to be small enough to let the body develop easily mea-
surable oscillations. However, the topological conditions of the
contact area �surface roughness and curvature� as well as mis-

alignments of the direction of plunger retraction could make the
release direction noncoincident with the normal to the TM mating
surface, both in flight and ground experiment environment. In the
ground experiment, this would result in a momentum transfer not
only along the test mass mock up n-axis, but also along the s- and
t-axes. If the constraining stiffness Ks and Kt are not low enough,
the following oscillations along the s- and t-axes would be too
small to be detectable, and the components of the acquired mo-
mentum would not be measured.

In the simple pendulum suspension setup, the problem arises
along the t-axis. Any component of force impulse acting along
this axis is not detected by the TM mock-up oscillations. How-
ever, if the plunger mock-up is subjected to a force pull compo-
nent along the t-axis, then this is measured by the load cell that
monitors the tension on the suspending fiber.

5.2.3 Microseismic Related Kinetic Energy. In the two-particle
scheme, the adhered plunger constitutes a body bound in a force
potential well. If we want to avoid that the momentum transfer is
obscured by other phenomena related to the ground environment,
we need to make sure that the force noise acting on the TM and
the plunger �e.g., seismic noise� does not induce on the plunger, a
kinetic energy, relative to the TM, sufficient to overcome the bind-
ing energy �U. Consequently, the suspension system shall pro-
vide sufficient isolation from the noise sources acting in the labo-
ratory environment. This issue will be addressed in the following.

5.3 Experimental System Description. The experiment is
basically aimed at measuring the transferred momentum between
two suspended adhered bodies through the detection of the free
oscillations of one of the two, after a sudden retraction of the
other one. Both bodies are suspended by a thin fiber and the
expected range of oscillation, compared to the suspending fiber
length, is such that their dynamics may be approximated by that of
a linearized simple pendulum. Each pendulum �the suspended TM
is represented in Fig. 11� is characterized by the fiber length L and
the suspended body height from ground h, and is subjected to the
horizontal, vertical, and tilt microseismic motion of the ground
�xs, zs, and �s, respectively�.

In the development of a high-performance isolation system
from ground vibration, considerable investigation has been fo-
cused on the characterization of the dissipative phenomena that
damp the free oscillation of the suspended system. The damping
of a suspension system is usually quantified by the quality factor
Q, defined as the ratio between the total energy stored in the
oscillator and the energy loss per cycle. Different damping mecha-
nisms may take place in a suspension system, such as viscous
forces, intrinsic loss of the materials, and stick and slip losses at

Fig. 9 Schematic representation of the ground-based experi-
ment of the release of two initially contacting bodies. The K
coefficients are the constraining stiffness components. The
suffixes 1 and 2 refer to the suspending points of the two
objects.

Fig. 10 Possible gravity-aided detachment. The gravity force
introduces in the contact patch shear stresses responsible for
the rupture of cold welding phenomena.

Fig. 11 Schematic illustration of the TM suspension, showing
the meaning of the quantities used in the dynamical analysis of
the measurement apparatus
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the joints �18�. A viscous force is proportional to the velocity, and
its magnitude per unit displacement shows a linear dependence on
the frequency, whereas the material and joint losses, often termed
structural damping, are frequency independent over many decades
of frequency. The presence of such dissipative phenomena may be
identified by observing the frequency dependence of the Q factor:
viscous damping gives rise to a linear relation between Q factor
and frequency, whereas in the presence of structural damping, the
Q factor displays a quadratic dependence on the frequency. As
long as a reasonable Q factor is achieved �e.g., of the order of 104,
which is commonly guaranteed by gravitational pendulums�, the
role of damping in the proposed application of the pendulum sus-
pension is not critical. Typical transfer functions from applied
force to oscillator displacement show nearly identical behavior
with the aforementioned damping models. We have then chosen to
adopt a viscous damping model in which the viscous constant is
expressed as a function of the Q-factor.

5.3.1 Dynamics of the System. The equations of motion of the
suspended TM �Fig. 11� have been written as functions of the total
impulse imparted Po and the ground microseismic noise xs�t�,
zs�t�, and �s�t�. In the hypothesis of small displacements and ro-
tations, they have been linearized with respect to the variables
xs�t�, �s�t�, and ��t�, while the dependence on zs�t� becomes of
higher order and is therefore neglected. The TM x displacement
projected onto the ground frame �see Fig. 11�, where it is actually
measured, is expressed in the frequency domain as the outcome of
a linear system where the inputs are represented by the Fourier
transform of the microseismic motion Xs�
� and �s�
�, and the
magnitude Po of the ideal impulse

X�
� = HPo�
�Po + HXs�
�Xs�
� + H�s
�
��s�
� �37�

The transfer functions are the following:

HPo�
� =
1

mTM

Q

� g

LTM
− 
2�Q + i
	 g

LTM

HXs�
� =
Q
2

� g

LTM
− 
2�Q + i
	 g

LTM

H�s�
� = LTM

� g

LTM
+

h

LTM

2�Q + i
	 g

LTM

� g

LTM
− 
2�Q + i
	 g

LTM

�38�

In Fig. 12�a�, the Bode plot of the impulse to displacement trans-
fer function is shown, for a 0.01 kg TM and two different pendu-
lum lengths �1 m and 10 m� having Q factor equal to 104. It
constitutes the typical simple oscillator dynamical response, with
resonant frequency equal to �1 /2��	g /LTM �around 500 mHz and
160 mHz for 1 m and 10 m length, respectively�. It is character-
ized at frequencies below resonance by a nearly constant magni-
tude LTM /mTMg equal to the inverse of the stiffness and above
resonance by the 1 / f2 decay of a nearly free-falling body.

A longer pendulum length has the advantage of a lower static
stiffness and a wider free-falling-like bandwidth, which origin
larger oscillations under the same given impulse. In Fig. 12�b�, the
Bode plot of the seismic horizontal displacement to the pendulum
displacement is shown. The pendulum constitutes a seismic noise
filter at frequencies below resonance, while the noise components,
having larger frequencies, bypass the suspension and directly en-
ter the TM displacement readout signal. In Fig. 12�c�, the Bode
plot of the seismic tilt to pendulum displacement is shown. The
plot shows an inverted behavior with respect to the latter case, as
it filters the tilt noise components only above resonance, where

the transfer function magnitude tends asintotically to h, the TM
height from the ground. At low frequency, the transfer function
magnitude tends to LTM, showing that a long pendulum guarantees
a worse rejection capability of the tilt noise than a short one.

The transfer functions here described give conflicting require-
ments on the design of the pendulum suspension. On one hand,
the need to constrain the TM as least as possible and to filter the
low-frequency horizontal seismic noise suggests to adopt a long
pendulum. On the other hand, this choice increases the low-

Fig. 12 Bode plot of „a… impulse, „b… seismic horizontal dis-
placement, and „c… seismic tilt to pendulum displacement
transfer function for two different pendulum lengths: 1 m and
10 m. The values of the parameters used in the calculation are
summarized in Table 1.
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frequency tilt noise injected in the suspended body. A critical as-
sessment of the optimal pendulum length will be discussed in the
following.

5.3.2 Characterization of Microseismic and Readout Noise.
The position readout noise as well as the microseismic horizontal
displacement and tilt constitute the major sources of physical dis-
turbance superimposed on the TM free oscillations. Therefore, a
noise model has been elaborated to evaluate the resolution of the
transferred momentum measurement. As a first cut to the problem,
the noise model has been kept as simple as possible, in order to
have a total noise at the readout signal whose power spectral
density �PSD� may be described by functions that still allow for
analytical manipulation in the optimal filtering technique. Typical
measured horizontal and tilt noise PSDs have been reviewed, and
considering that most of their effect is concentrated in a narrow
range around resonance, the following noise model has been con-
sidered suitable �see Table 1�:

1. Both horizontal and tilt noise have been considered zero-
mean stationary and Gaussian stochastic processes.

2. The horizontal displacement noise PSD is assumed constant
in acceleration, whereas the tilt noise PSD is assumed con-
stant in velocity.

3. The two noise sources have been considered uncorrelated.

The model of the noise present in the TM x-displacement readout
signal is completed �see Fig. 13� by adding a zero-mean stationary

Gaussian white noise of the sensor Sn�
�. By means of the trans-
fer functions from seismic noise to TM displacement �Eqs. �38��,
the PSD of the total noise can be calculated

Sx�
� = �HXs�
��2SXs�
� + �H�s�
��2S�s�
� + Sn�
� �39�

The PSDs of the horizontal and tilt noise as well as of the
readout noise has been measured using an experimental apparatus,
set up in the laboratories of the University of Trento �Italy� ac-
cording to the specifications elucidated above. Specifically, such
an apparatus consists of a vacuum chamber in which a prismatic
18
18
5 mm3 Al TM mock-up is suspended by means of 1 m
long pendulum. The TM position along the x direction is moni-
tored by a laser interferometer, which is rigidly mounted on an
optical window fixed to the vacuum chamber and detects the TM
through an optical viewport. Further information thereabout can
be found in Ref. �19�. This preliminary setup is intended to give
experimental validation of an analytical model of the noise affect-
ing the momentum measurement. To this purpose, the readout
noise of the laser interferometer has been evaluated by measuring
the position with respect to the measuring device of a mirror rig-
idly mounted inside the vacuum chamber. The spectral density of
the position readout noise, plotted in Fig. 14, has been obtained by
signal detrending, averaging ten time windows, and by applying
the Hemming windowing. It can be noted that the spectral density
is equal to �10−9 m / 	Hz around the 0.465 Hz resonant fre-
quency of the pendulum, where most of its effect is concentrated.
The readout noise PSD has then been assumed constant and equal
to 10−18 m2 /Hz. Furthermore, the laser interferometer has been
used to measure the free oscillation of the TM mock-up over a
long time scale �10 h�. In Fig. 15, the spectral density of the
position readout, obtained by averaging ten time windows and by
applying the Hemming windowing, is compared to that predicted
by Eq. �39� using the PSD values indicated in Table 1. It is worth-
noting that the adopted noise model accurately reproduces the
experimental data; in addition, the PSDs of horizontal and tilt
seismic noise reported in Table 1 are in very good agreement with
the literature �e.g., see Refs. �20–23��.

Figure 16 depicts the PSD of the TM position noise expressed
by Eq. �39� using the data indicated in Table 1 for two pendulum
lengths. Noteworthy, the low-frequency noise is dominated by the
tilt contribution, and this effect is enhanced by the adoption of a
longer pendulum. The limited dissipation originates a narrowband
peak at the resonance, above which the TM becomes sensitive to

Table 1 Values of parameters used in the calculations

Parameter Symbol Value

TM mass M 0.01 kg
Pendulum length L 1 m
TM distance from
the ground

h 0.25 m

Gravity
acceleration

g 9.807 m s−2

Resonant angular
frequency


0=	g /L 3.13 rad /s

Quality factor Q 104

Horizontal
acceleration seismic
noise PSD

SA,seism 4
10−13 m2 s−4 /Hz

Tilt angular
velocity seismic
noise PSD

S�̇,seism 2.5
10−17 rad2 s−2 /Hz

Position sensor
noise PSD

Sn 10−18 m2 /Hz

Fig. 13 Scheme of the model of the noise present in the TM
x-displacement readout signal expressed by Eq. „39…. H indi-
cates the transfer functions, SXs„�… is the horizontal displace-
ment seismic noise PSD, S�s„�… is the tilt seismic noise PSD,
Po is the transferred impulse, and Sn„w… is the position sensor
noise PSD.

Fig. 14 Spectral density of the measurement noise of the laser
interferometer used to monitor the position of a TM mock-up
suspended inside a vacuum chamber
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horizontal seismic noise. Being such a noise PSD constant in ac-
celeration, its effect on the TM displacement is attenuated like
1 / f4 and the resulting high-frequency noise quickly tends to the
sensor noise. We adopt as a baseline a 1 m length pendulum: a
brief discussion will be presented in the following on the choice
of an optimal length. Starting from the PSD shown in Fig. 16, a
sampled noise has been generated in order to build a realistic
sampled data stream for the following optimal filter investigation.
Data have been generated for 200 s at 500 Hz sampling fre-
quency, in order to resolve a wide frequency band of the noise
PSD. The sampled noise is shown in Fig. 17.

5.3.3 Microseismic Noise and Kinetic Energy of the Sus-
pended Bodies. One condition in order for the momentum transfer
not to be obscured by other phenomena is that the seismic noise
does not induce on the plunger an effective kinetic energy suffi-
cient to overcome the binding energy �U. This kinetic energy can
be calculated from the relative velocity root mean square �rms�

fluctuation. The horizontal seismic acceleration and seismic tilt
angular velocity PSD are transferred to that of the relative velocity
of TM and plunger according to

SV = SA,seism� − igQTM +	 g

LTM

LTM




gQTM + LTM
�i	 g

LTM

− QTM��
−

− igQpl +	 g

LTM

Lpl




gQpl + Lpl
�i	 g

Lpl

− Qpl���
2

+ S�̇,seism� �h + LTM��gQTM + i	 g

LTM

LTM
�
gQTM + LTM
�i	 g

LTM

− QTM
�

−

�h + Lpl��gQpl + i	 g

Lpl

Lpl
�
gQpl + Lpl
�i	 g

Lpl

− Qpl
� �
2

�40�

where the subscripts TM and pl indicate the length L and quality
factors Q of the TM and plunger pendulums, respectively. The
rms velocity is given by:

�v2� =
1

2�
�

−�

�

SV�
�d
 �41�

The preceding integral can be easily treated by considering the
linear expansion in the difference �L=LTM −Lpl, which is assumed
to be made small and by assuming the worst case, where one of
the two quality factors is much larger than the other. Moreover, as
SA,seism and S�̇,seism are reasonably smooth functions around the
resonant angular frequency 
0=	g /L, one can approximate it
with a constant and then get

Fig. 15 Spectral density of the TM position noise deduced
from the free oscillations of a TM mock-up suspended inside a
vacuum chamber. The red „smooth… line corresponds to the TM
noise model expressed by Eq. „39…, where the values of the
parameters used in the calculation are summarized in Table 1.

Fig. 16 PSD of the total readout noise simulated in Sec. 5.3.2
for two different pendulum lengths: 1 m and 10 m. The values
of the parameters used in the calculation are summarized in
Table 1.

Fig. 17 Position read-out noise data modeled using the PSD
displayed by Fig. 15. The values of the parameters used in the
calculation are summarized in Table 1.
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�v2� = SA,seism
Qmax

2

2
	L

g
�L +

�L

L
� + S�̇,seism

Qmax
2

2

	g

L
�h + L�2

+ g	L

g
�h + L��h + 3L�

�L

L2 � �42�

where Qmax is the largest of the quality factors.
Substituting the realistic horizontal seismic acceleration and

seismic tilt PSDs into Eq. �42� and assuming a difference of the
pendulums’ lengths of 1 mm, one obtains the PSD of relative
velocity, depicted in Fig. 18, whose rms value is about 1

10−12 m2 /s2. Assuming a plunger mass of �10 mg, a kinetic
energy of about 2
10−17 J is obtained, i.e., well below the value
of Tmax�2.5
10−11 J, set as an upper limit for �U.

5.4 Noise Optimal-Filter. Different techniques have been
adopted in the literature to extract the applied impulse from the
measured free oscillation of the suspended system. The more re-
cent developments �7� have investigated the possibility of resolv-
ing the force function and measuring the applied impulse for long
impulse widths. Accordingly, typical impulse widths expected in
the present application are three orders of magnitude smaller than
the oscillator period �milliseconds against seconds�; therefore, the
perfect impulse approximation seems reasonable. The effort is
then focused on the possibility of exploiting the availability of the
time-resolved motion of the oscillator to increase the measure-
ment resolution of the transferred momentum.

In this section, we show that the standard Wiener–Kolmogorov
filter �WKF� theory of optimal estimation �e.g., �24,25�� can be
applied to assess the momentum transferred by an impulsive force
to a harmonic oscillator. We assume that a harmonic oscillator of
mass m, resonant angular frequency 
0, and quality factor Q is
subject to a force of total impulse P0. The readout of the position
x of the oscillator �in one dimension� is affected, as discussed in
the preceding section, by a stationary and Gaussian noise with
PSD Sx�
�. The momentum transferred from the force to the mass
is measured from the motion of the oscillator as detected by the
readout, which is given by

x�t� = As�t� + n�t� �43�

where s�t� is the response signal of the system to a unit impulse
�known�, A is the signal amplitude, function of the unknown im-
pulse, and n�t� is the noise. We now look for an optimal estimator
of the signal amplitude from a linear combination of the data x�t�

Â�T� =�
0

T

h�t��x�T − t��dt� �44�

where the “filter” function h�t� has to be chosen such that Â is an
unbiased estimator

�Â� = A �45�

and that its variance �
Â

2 ��Â2�− �Â�2 is minimal. Consequently,

h�t� obeys the integral equations

�
0

T

h�t��s�T − t��dt� = 1 �46�

in order to fulfill the condition expressed by Eq. �45�, and

�
0

T

h�t��R�t� − t��dt� +
�

2
s�T − t�� = 0 for 0 	 t 	 T �47�

according to the condition of minimal variance with the con-
strained imposed by Eq. �46�. R is the autocorrelation of the sto-
chastic noise n�t�, and � is the Lagrange multiplier corresponding
to the constrain expressed by Eq. �46�. If the observation time T is
large enough, one may assume that the data are available over the
whole time scale. Thus, taking T=0, Eqs. �46� and �47� become

�
−�

�

h�t��s�− t��dt� = 1 �48�

�
−�

�

h�t��R�t� − t��dt� +
�

2
s�− t�� = 0 for − � 	 t 	 �

�49�

whose Fourier transforms are

1

2�
�

−�

�

h�
�s�
�d
 = 1 �50�

h�
�Sx�
� +
�

2
s*�
� = 0 �51�

where s*�
� is the conjugate Fourier transform of the signal. From
Eqs. �50� and �51�, one finally gets the filter function h�
�

h�
� =
s*�
�
Sx�
�
 1

2�
�

−�

� �s�
��2

Sx�
�
d
�−1

�52�

The corresponding variance �
Â

2
is equal to

�
Â

2
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 1

2�
�

−�

� �s�
��2

Sx�
�
d
�−1

�53�

Now, applying this filter to a harmonic oscillator, the minimum
detectable value of the transferred momentum is given by

�P0
= � 1

2�
�

−�

�

1

m2

1

�
0
2 − 
2�2 + 
2
0

2/Q2

Sx�
�
d
�

−1/2

�54�

Assuming as a first approximation that the readout noise has a
white PSD, the preceding equation yields

�P0,white =	2Sxm
2
0

3

Q
�55�

Notably, the measurement precision of the transferred momentum
is inversely proportional to the TM mass, suggesting the employ-
ment of a light mock-up of the TM. Moreover, the measurement

Fig. 18 Power spectral density of relative velocity of TM and
plunger resulting from the seismic noise modelled in Sec. 5.3.2.
The values of the parameters used in the calculation are sum-
marized in Table 1.
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precision increases with decreasing resonant frequencies, i.e., in-
creasing pendulum lengths. However, it should be reminded that
large pendulum lengths tend to exacerbate the seismic noise on
the TM, as illustrated in Fig. 16. Therefore, substituting the real-
istic PSD of readout noise derived in the preceding section into
Eq. �54� and plotting the measurement resolution as a function of
the pendulum length, one observes the existence of an optimal
pendulum length �see Fig. 19�a��. This value represents the trade-
off between higher measurement sensibility of longer pendulums
and lower noise disturbance of shorter ones. Long pendulums are
however preferable because their resolution is maintained good
and less affected by variations in the noise spectra. This is mainly
because, given an impulse, they develop large oscillations any-
way. Expectedly, plotting the minimum detectable value of the
transferred momentum as a function of the TM mass, a propor-
tional correlation is observed, as shown in Fig. 19�b�. Remark-
ably, as illustrated in Figs. 19�a� and 19�b�, a 0.01 kg heavy TM
mock-up suspended on 1 m long pendulum will give a measure-
ment resolution of about 2
10−9 kg m /s, i.e., 0.2% of the maxi-
mum linear momentum allowed in the LISA TM release.

We now test the ability of the filter function h�t�, defined by Eq.
�46�, to estimate the impulse imparted to a harmonic oscillator in
the presence of the realistic readout noise modeled in Sec. 5.3.2.
Let us assume that the TM is subjected at the instant t=0 to an
impulse P0 equal to 10−5 kg m /s. The resulting position readout is
depicted in Fig. 20 and has been obtained by superimposing the

readout noise depicted in Fig. 17 on the response signal of the
system to the impulse P0 applied at the instant t=0. In order to
extract the imparted impulse, one can build the filter function
considering the response of the system to a unitary impulse �equal
to its transfer function�, according to the following expression:

h�
� =
1

m

1

�
0
2 − 
2� − i
�
0/Q�

Sx�
�
�P0

2 �56�

The advantage of the proposed technique for the momentum mea-
surement is shown by Eq. �56�. The instrument calibration con-
sists of the calculation of the filtering function that is character-
ized by physical quantities, which may be easily measured:
suspended mass, resonant frequency, and Q factor. The total noise
at the readout Sx�
� may be measured through a static experiment,
in which no impulse is applied to the pendulum, as described in
Sec. 5.3.2. Moreover, no signal prefiltering is needed to denoise
the signal prior to processing, avoiding critical choices of filtering
techniques and threshold settings.

The inverse Fourier transform of the function h�
� is exactly
the filter function h�t�, which is plotted in Fig. 21. Since the os-
cillation amplitude of the pendulum is proportional to the im-
parted impulse, the application of the filter function to the readout
data of Fig. 20 gives the estimation of the imparted impulse. Fig-
ure 22 displays the dependence of the impulse estimation relative
error on the integration time T defined in Eq. �46� for the estima-

Fig. 19 „a… Variation of the minimum impulse detectable using
a Wiener–Kolmogorov „WK… linear filter with the pendulum
length. „b… Variation of the minimum impulse detectable using a
WK linear filter with the TM mass. The values of the parameters
used in the calculation are summarized in Table 1.

Fig. 20 Simulation of position readout data in the presence of
seismic noise modeled in Sec. 5.3.2 in the case of application
of an impulse equal to 10−5 kg m/s at the instant t=0. The val-
ues of the parameters used in the calculation are summarized
in Table 1.

Fig. 21 WK filter function used in the estimation of the trans-
ferred momentum based on the position data shown in Fig. 20
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tion of the unknown signal amplitude. It can be noted that the
relative error drastically sinks for integration times longer than
0.4 s, corresponding to about five periods of the dominant pole of
the function h�
�. In particular, a 200 s integration time yields an
estimation of P0 equal to 9.9988
10−6 kg m /s, i.e., �0.1% rela-
tive error.

6 Conclusions
The present paper is focused on the measurement of the mo-

mentum transfer occurred when two free-falling bodies, interact-
ing with surface forces, are impulsively separated in order to in-
vestigate the dynamics of release of objects in the absence of
gravity. In particular, the release conditions as well as the related
parameters, influencing the momentum acquired by the released
body through adhesion rupture, have been extensively discussed.
The dynamics of the release has been first analytically studied
under the assumptions that only conservative forces act between
the contacting objects. In this case, the knowledge of the only
adhesion potential energy is sufficient to predict the impulse im-
parted to the test mass in the case of a quick retraction of the
releasing device. On the contrary, a ground-based experiment is
necessary if the contact is affected by additional nonconservative
interaction phenomena, such as cold welding and sliding. There-
fore, a measuring technique based on two pendulums, suspending
the separating bodies, has been analyzed with particular attention
on the capability to accurately reproduce the stress status on the
contact patch, on the noise sources affecting the measurement and
on the performances of a noise optimal-filtering technique in
terms of achievable measurement resolution.
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A Reciprocity Relation Couples
Newtonian and Eshelbian
Mechanics
By considering a stressed elastic body subjected sequentially to a material displacement
of a defect and the application of a physical force, the authors have succeeded in arriving
at a novel type of coupling of Newtonian and Eshelbian mechanics by means of a reci-
procity theorem analogous to that of Maxwell. This reciprocity relation is more involved
than those in strictly physical or strictly material space. An order of magnitude analysis
was required to obtain consistent relations. Several illustrative examples are worked out,
and suggestions for some experiments, which in their evaluations would make use of the
new expressions, are offered. �DOI: 10.1115/1.2755140�

Introduction
Since the introduction of the notion of a “force” on a singularity

or a defect by Eshelby more than a half century ago, the area
configurational mechanics or mechanics in material space or Es-
helbian mechanics, based on this notion, has experienced a broad
development and growth, particularly during the past decade. This
is evidenced by the publication of numerous journal papers, sev-
eral books �1–3�, and volumes of conference proceedings �4,5�.

Whereas the usual or standard or Newtonian mechanics is con-
cerned with equilibrium and motion of bodies with mass in a
space, now specifically called physical space in which Newton’s
laws are applicable, configurational mechanics deals with objects
that may or may not have mass, such as dislocations, cracks,
inclusions, cavities, and nonhomogeneities, which, under suitable
conditions, can move or be displaced within the deformable ma-
terial body in which they find themselves. Thus, the notion of the
Eshelby force can be somewhat generalized and is now often re-
ferred to as material force, by contrast to a physical �or Newton-
ian� force relevant in mechanics in physical space.

A material force is always defined as the negative gradient of
the total energy of the system with respect to the position of the
defect in the material. Far-reaching analogies �correspondence or
duality� exist between mechanics in physical space and mechanics
in material space as illustrated by numerous examples in �2�.

Recognizing the usefulness of reciprocity theorems of Maxwell
and Betti in Newtonian mechanics of linearly elastic bodies, the
present authors have successfully attempted to establish analogous
theorems in mechanics in material space �6�. Illustrations of these
novel reciprocity theorems will be presented in �7�.

The purpose of the present contribution consists in advancing
two novel theorems in mixed, i. e., physical-material formulation.
Thus, the terms “force” and “displacement,” in the sequel, have to
always be specified as being either physical or material. The de-
velopment begins by considering a linearly elastic body in static
equilibrium under the action of arbitrary applied surface tractions
and body forces and containing an arbitrary number of defects and
nonhomogeneities. Attention is focused on a point defect that can
be displaced in the material and on an additional concentrated
physical force, which can be applied at a different point of the
body.

It turns out that in material space the material displacement of a

defect plays the role of physical force application. In physical
space, work is done by the applied physical force �cause� in a
physical displacement �effect�, whereas in material space work is
done by the material forces �effect� in the applied material dis-
placements �cause�.

The analysis in the two mixed spaces carried out in the first
section is more involved than the corresponding analysis in
strictly physical or strictly material space and even requires an
order-of-magnitude estimation in order to propose a consistent
formulation of a reciprocity theorem analogous to that of Maxwell
�cf., �8��. The augmented intricacy is a result of the fact that the
physical displacement of the point of application of the force is
different, depending on whether the defect has been displaced or
not. This difference happens to be of the same order as the dis-
placement of the point of application of the force due to the ma-
terial displacement of the defect. A second relation analogous to
Betti’s theorem �cf., �9�� likewise contains not two, but three in-
terrelated influence coefficients.

The subsequent section deals with three different versions of a
simple, one-dimensional specific example to illustrate the validity
of the purposed theorems. The final section contains several sug-
gestions of possible experiments in which the novel theorems
could be advantageously applied.

Formulation of the General Problem
Consider a linearly elastic body of arbitrary shape suitably sup-

ported and subjected to an arbitrary set of surface tractions and
body forces that maintain static equilibrium and that induce a state
of stress in the body. We focus our attention on a concentrated
defect at point 1 and a physical concentrated force F that will be
applied at point 2 �cf., Fig. 1�. The body may contain an arbitrary
set of various other defects and inhomogeneities. The physical
state of stress is in turn accompanied by some distribution of
material forces. Next, we contemplate a sequence of two opera-
tions A called A1 and A2.

In A1, we displace, within the material, the defect 1 by some
small amount �. This changes the material force B10, effective
there before, by some amount B11

A such that the total material
force B1, at 1 is now

B1 = B10 + B11
A �1�

Another consequence of the material displacement � is that point
2, which has originally been displaced due to the state of stress by
an amount u20 from the unstressed state, is now displaced addi-
tionally by an amount u21

A . Here and in the sequel, the first sub-
script indicates the location of the “effect” and the second the
location of the “cause.”
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The work done on the body in the operation A1 is

W01 = � · B10 + 1
2� · B11

A �2�

where the dot indicates a scalar product. The first term on the right
recognizes the existence of B10 before � was applied and the
factor 1 /2 of the second term implies a linear relationship be-
tween the applied � and the material force B11

A induced by �. Such
a relationship should be valid for small �.

In operation A2, we apply additionally the physical force F at
point 2. This changes the physical stress distribution and the ma-
terial forces throughout the whole body. B1 at point 1 will now be

B1 = B10 + B11
A + B12

A �3�

and the physical displacement at point 2 will now be

u2 = u20 + u21
A + u22

A �4�

The work done in A2 concerns only F because the defect at 1 has
not been displaced in the material. �It has been displaced in physi-
cal space, but no work has been done.�

Thus, the work done on the body in the two parts of operation
A, namely A1 and A2, is

WA = � · B10 + 1
2� · B11

A + 1
2F · u22

A �5�

Next, we consider a sequence of two operations B consisting of
B1 and B2 in which we apply the physical force F first and the
material displacement � second.

Application of F at 2 changes the material force B10 at 1 by an
amount, say, B12

B , such that

B1 = B10 + B12
B �6�

and the physical displacement 2, proportional to F, shall be called
u22

B . The total physical displacement at 2 is now

u2 = u20 + u22
B �7�

and the work on the system is

W02 = 1
2F · u22

B �8�

In the second part B2 of the operation B, the point 1 is addi-
tionally displaced in the material by an amount �. This changes
the material force at 1 by an amount, say, B11

B and the physical
displacement at 2 by an amount, say, u21

B . Thus, the total resulting
material force at 1 is now

B1 = B10 + B12
B + B11

B �9�

and the total physical displacement at 2 is

u2 = u20 + u22
B + u21

B . �10�

The work done on the system in operation B is then

WB = 1
2F · u22

B + � · �B10 + B12
B � + 1

2� · B11
B + F · u21

B . �11�

It is argued now that the work done on the system in operations A
and B should be the same, regardless of the sequencing, because,
in the final state, the elastic stored energy in the body is the same
and equal to the external work. Thus,

WA = WB

i.e.,

− � · �B12
B + 1

2 �B11
B − B11

A �� = F · �u21
B + 1

2 �u22
B − u22

A �� �12�

The various contributions to expression �12� are illustrated also
graphically in Fig. 2

Order of Magnitude Estimates
We wish to examine now whether all terms in the relation WA

=WB above are of the same order or not. We recall �2� that the
original material force B10 is of the order of the square of some
originally applied forces F0, which induced the physical state of
stress, i.e.,

B10 = 0�F0
2� �13a�

where 0�� indicates “order of…”. The proportionality factor would
characterize the “strength” of the defect, e.g., the length of a
crack, the magnitude of the Burgers vector of a dislocation, the
diameter of a cavity, the difference in stiffness of inclusion and
bulk material, the jump in stiffness at a phase transition, etc. The
change in the material force B11

A due to a material displacement is
proportional to the magnitude of the translation since linearity is
implied. Thus,

B11
A = 0��F0

2� �13b�
If, in addition, a physical force is applied, then the change of the
material force would be

B12
A = 0��F2� �13c�

In operation B, first the physical force is applied, changing the
material force by an amount

B12
B = 0�F2� �13d�

and the additional material translation � causes

B11
B = 0��F2� �13e�

On the displacement side at 2, we have the following estimates.
Because of linearity the displacement in the initial state is

Fig. 1 Elastic body under arbitrary load with, especially, a
concentrated defect at point 1 and a concentrated physical
force at point 2

Fig. 2 Graphical illustration of the operations A1, A2, B1, and
B2
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u20 = 0�F0� �14a�

Because of the material translation, the stiffness of the body is
changed, resulting in a physical displacement of the amount

u21
A = 0��F0� �14b�

An additional force would change the displacement to

u22
A = 0��F� �14c�

After applying first the physical force, the initial displacement is
changed proportional to the applied force. Thus,

u22
B = 0�F� �14d�

Let us assume that the factor of proportionality would be �, i.e.,
u22

B =�F. It may be mentioned that u22
A =�F+0��F�, i.e., the terms

not involving � are equal. Finally, an additional material transla-
tion of defect 1 causes a change in the physical displacement at 2
to the amount of

u21
B = 0��F� �14e�

We note, that the terms � ·B12
B , F ·u21

B , and F · 1 / 2 �u22
B −u22

A � are of
the same order of magnitude 0��F2�, whereas the term � · �1 /2�
��B11

B −B11
A � is of the order 0��2F2� and can thus be omitted in

further developments �see the graphical illustration in Fig. 2�.
The reciprocity relation between an applied material defect dis-

placement � and a physical force F application is thus

− � · B12
B = F · �u21

B + 1
2 �u22

B − u22
A �� �15�

It is thus recognized that reciprocity in mixed �and coupled�
physical-material space is more involved than in pure physical �8�
or pure material space �6� because the difference in the work of
the force F in the physical displacement of its point of application
before and after application of the material displacement of a de-
fect at some other point of the body is of the same order as the
work done by the force in the physical displacement produced by
the defect displacement �.

To establish a relation in physical-material space analogous to
Betti’s theorem, we have to consider the scalar version of the
relation analogous to Maxwell’s theorem. Let the component of
B12

B parallel to � be called B12
BP and the components of u2i �i

=1,2� parallel to F be called u2i
P . Thus the scalar version of �15� is

− �B12
BP = F�u21

BP + 1
2 �u22

BP − u22
AP�� �16�

where F and � are the magnitudes of F and �, respectively. Be-
cause of linearity, we have

− B12
BP = �12F �17�

and

u21
BP = �21�; 1

2 �u22
BP − u22

AP� = �22� �18�

where �12, �21, and �22 are influence coefficients.
Hence,

�12 = �21 + �22 �19�

which represents the physical-material �or Newtonian–Eshelbian�
version of Betti’s theorem �9�.

It is noteworthy that in this novel mixed formulation, Betti’s
theorem acquires an additional term �22, by contrast to classical
Betti’s theorem �in physical space� and the proposed version in
strictly material space �6�. Thus, the coupling of physical and
material space through reciprocity turns out to be more intricate
than one might have expected.

Illustration of the Mixed Reciprocity Relation for a
Nonhomogeneous Bar

Absence of Initial Stress. We consider an elastic bar of length
�, built-in at left end and free at the other �cf. Fig. 3�. The bar
possesses the following stiffnesses:

�EA�1 0 � x � x1

�20�
�EA�2 x1 � x � �

where E is Young’s modulus and A the cross-sectional area. The
jump in the compliance C=1 /EA at point 1 �x=x1� is designated
as �C�

�C� =
1

�EA�1
−

1

�EA�2
�21�

Application of an axial force F shall take place at point 2 �x
=x2�.

Generally, the material force B acting at a jump in stiffness of a
bar is, in the absence of distributed axial forces, given by �2�

B = − 1
2N2�C� �22�

where N is the tension/compression force at the point of the dis-
continuity. Initially, there is no applied force and, thus, the physi-
cal stress in the bar is zero and

B10 = 0, u20 = 0 �23�

where u is the axial physical displacement.
In an operation A1, the jump �C� is displaced by an amount �

and afterward

B11
A = 0 u21

A = 0 �24�

The subsequent operation A2, with the application of F, leads to

B12
A = − 1

2F2�C� �25�

and

u22
A = F� x1 + �

�EA�1
+

x2 − x1 − �

�EA�2
�

= F� x1

�EA�1
+

x2 − x1

�EA�2
� + �F�C�

= uF + �F�C� �26�

In operation B1, application of F first, results in

B12
B = − 1

2F2�C� �27�

u22
B = F� x1

�EA�1
+

x2 − x1

�EA�2
� = uF �28�

Operation B2, which follows with the application of �, leads to

B11
B = 0 u21

B = �F�C� �29�

Substitution into the reciprocity relation yields

Fig. 3 Elastic bar with a jump in stiffness at 1 and a point force
at 2
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− ��− 1
2F2�C�� = F��F�C� + 1

2 �uF − uF − �F�C��� �30�

which is an identity and verifies the validity of the reciprocity
relation �16�. The Betti version �19� of the reciprocity theorem is
readily verified by substitution.

Load-Controlled Initial Stress. We again consider an elastic
bar sketched in Fig. 3. but now, by contrast to the previous prob-
lem, an axial force N0 is applied initially at the right end.

As in the general case we consider two operations A1 and A2,
as well as two operations B1 and B2. The various material forces
at point 1 and physical displacements at point 2 are, in this par-
ticular example, calculated to be

B10 = − 1
2N0

2�C�; �31a�

B11
A = 0 �31b�

B11
B = 0 �31c�

B12
B = − 1

2 �N0 + F�2�C� + 1
2N0

2�C� = − F�N0 + 1
2F��C� �31d�

u20 = N0� x1

�EA�1
+

x2 − x1

�EA�2
+

�− x2

�EA�2
� , �32a�

u21
A = N0��C� �32b�

u22
A = uF + F��C� �32c�

where

uF = F� x1

�EA�1
+

x2 − x1

�EA�2
� �32d�

u22
B = uF �32e�

u21
B = �N0 + F���C� �32f�

Substitution into the reciprocity relation leads indeed to an iden-
tity and thus verifies the validity of the proposed reciprocity rela-
tion.

Displacement-Controlled Initial Stress. In order to also vali-
date the order-of-magnitude estimation, we consider the same bar
as previously, but now it is subjected to a displacement controlled
initial stress. The bar of original unstressed length � is displaced at
the free end by an amount ����x1 ,x2 , � � �cf. Fig. 4�.

This induces an axial force N0: the relationship between � and
N0 is

� = N0� x1

�EA�1
+

x2 − x1

�EA�2
+

�− x2

�EA�2
� = N0	 �33�

with

	 =
x1

�EA�1
+

x2 − x1

�EA�2
+

�− x2

�EA�2
�34�

Because of fixed grip conditions, the displacement � has to be
the same after application of the material displacement � at point
1 and the physical force F at point 2. This leads to

�F + N�F�
x1 + �

�EA�1
+ �F + N�F�

x2 − x1 − �

�EA�2
+ N�F

�− x2

E2A2
= �

�35�

where N�F is the axial force at the right end of the bar. Further-
more,

N�F�	 + ��C�� + F�	1 + ��C�� = � = N0	 �36�

with

	1 =
x1

�EA�1
+

x2 − x1

�EA�2
�37�

It follows that

N�F =

N0 − F�	1

	
+

��C�
	

�
1 +

��C�
	

�38�

An expansion in powers of � leads to

N�F = N0 − F
	1

	
−

��C�
	

�N0 + F�1 −
	1

	
�� + 0��2� �39�

The axial force at cross section 1 after application of � and F is

N�F + F �40�

Thus,

N�F
1 = �N0 + F�1 −

	1

	
���1 −

��C�
	

� �41�

The axial force is called N�
1, if only � is applied with F=0 in the

above expression, NF
1 if only F is applied with �=0 above, and N0

1

if neither � nor F is applied.
The displacement of cross section 2, where F is applied and

after application of � and F, is

��F = N�F
1 � x1 + �

E1A1
+

x2 − x1 − �

E2A2
� �42�

or, after substitution

��F = �N0 + F�1 −
	1

	
���1 −

��C�
	

��	1 + ��C�� �43�

Expansion in powers of � leads to

��F = 	1�N0 + F�1 −
	1

	
�� + ��C��N0�1 −

	1

	
� + F�1 −

	1

	
�2�

+ 0��2� �44�

The various displacements ��, �F, and �0 if only � is applied, if
only F is applied, and if neither � nor F is applied, respectively,
can be obtained as special case of the above expression by setting
F=0 or �=0 or F=�=0, respectively.

Next, we have to evaluate the various displacements to obtain

u21
A = �� − �0 = ��C�N0�1 −

	1

	
� �45a�

u22
A = ��F − �� = F	1�1 −

	1

	
� + ��C�F�1 −

	1

	
�2

�45b�

u22
B = �F − �0 = F	1�1 −

	1

	
� �45c�

u21
B = ��F − �F = ��C��1 −

	1

	
��N0 + F�1 −

	1

	
�2� �45d�

The various material forces, in turn, are calculated to be

Fig. 4 Elastic bar prestressed by N to close the gap �
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B10 = − 1
2 �C�N0

2 �46a�

B11
A = −

1

2
�C�	�N�

1�2 − �N0
1�2
 =

��C�2

	
N0

2 �46b�

B12
A = −

1

2
�C�	�N�F

1 �2 − �N�
1�2


= − �C�F�1 −
	1

	
��N0 +

1

2
F�1 −

	1

	
���1 − 2

��C�
	

�
�46c�

B12
B = −

1

2
�C�	�NF

1�2 − �N0
1�2


= − �C�F�1 −
	1

	
��N0 +

1

2
F�1 −

	1

	
�� �46d�

B11
B = −

1

2
�C�	�N�F

1 �2 − �NF
1�2
 = −

��C�2

	
�N0 + F�1 −

	1

	
��2

�46e�
Substitution into the general reciprocity relation �16� indeed re-
sults in an identity. This confirms the general order-of-magnitude
analysis carried out in a previous section and validates �16�.

Suggestions for Possible Experimental Applications of
Reciprocity Relations

One can think of at least three possible practical applications of
the mixed �physical-material� reciprocity relation

− �B12
B = F�u21

B + 1
2 �u22

B − u22
A �� �47�

We return to the first illustrative example above of a bar with no
initial load or physical displacement �Fig. 3�.

�a� The right-hand side of the reciprocity relation divided by
� can be evaluated by elementary means of standard
strength-of-materials theory and will yield the material
force B12

B at cross section 1 without any knowledge of
mechanics in material space, i.e.,

B12
B = −

F

�
��F�C� +

1

2
uF −

1

2
uF −

1

2
�F�C��

or

B12
B = − 1

2F2�C� �48�

If �C� is interpreted as the jump in compliance at the
interface of two phases of the same material and if a
critical value of B12

B exists, which induces a motion of
this interface, then the above relation, for given �C� can
be used to determine a critical force F at which the phase
interface starts moving.

�b� In a second possible experiment, the problem consists of
determining the unknown magnitude of the jump in the
compliance in a two-phase material, as sketched in Fig.
5�a�.

For this purpose, two barlike samples are cut out of the
bulk material. The two samples that differ by the location
of the phase boundary, which is � apart, are built in at
one end, and a force F is applied at the free end to each
sample as indicated in Fig. 5�b�.

The end displacements of the two samples will be dif-
ferent and are labeled u22

A and u22
B . Substitution into the

reciprocity relation and noting that here u21
B =0, we obtain

− ��− 1
2F2�C�� = F 1

2 �u22
B − u22

A �

or

�C� =
1

F�
�u22

B − u22
A � �49�

which solves the problem posed.
�c� A third formulation of a possible experiment might con-

cern the problem of the �slow� material displacement of
the phase boundary as a function of time ��t� for given
compliance jump �C� and given applied load F. The elon-
gation of the sample as a function of time ��t� will be

��t� = u22
B �t� − u22

A �0� �50�
and from the reciprocity relation, we obtain

��t� =
��t�
F�C�

�51�

To achieve an actual motion of the phase boundary, the
sample might be subjected to a high temperature by plac-
ing it into a furnace, which might prevent a direct mea-
surement of the position of the phase boundary.

Concluding Remarks
The developments presented above have demonstrated that a

novel type of coupling can be established between Newtonian
�physical� and Eshelbian �material� mechanics by means of reci-
procity relations. The quantities that connect the two areas are, of
course, energy and work. The new unifying theorems allowed us
to suggest several experiments that might be useful under some
circumstances.
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A Dynamic Model of the
Deformation of a Diamond Mesh
Cod-End of a Trawl Net
A dynamic model of a diamond mesh cod-end subject to harmonic forcing is developed.
The partial differential equations governing the displacements of the cod-end and the
tension in the twine are first derived and then analyzed using the harmonic balance
method by substituting a harmonic series for the dependent variables and the forcing
term. A closed-form solution is derived for the case of rigid-body motion, where there is
no deformation of the cod-end geometry, along with the conditions for the forcing under
which this motion occurs. A pressure loading, which varies linearly over a portion of the
cod-end and varies harmonically with time, is then introduced as a first representation of
the loading on the cod-end that results from the pressure and acceleration forces on the
catch due to surge motion of the towing vessel. The resulting sets of equations for the
static and the first and second harmonic terms are solved numerically in a sequential
manner, and the results presented for a number of cases. These results show that, due to
the nonlinearity of the system, the oscillatory motion of the cod-end is asymmetric, and
that the deformation of the net and the amplitude of oscillation increases as the region
over which the forcing is applied increases. The model is the basis for a more complete
coupled catch/cod-end model. �DOI: 10.1115/1.2755153�

Keywords: trawl, cod-end, dynamic model, harmonic balance, nonlinearity

1 Introduction
In recent decades, there has been increasing international con-

cern about diminishing fish stocks. The depletion of stocks has, in
the past, demonstrated both the biological and socioeconomic ef-
fects of overfishing. The collapse of the North Sea herring fishery
in the 1970s resulted in a ban on all herring fishing in 1977 which
was not lifted until 1983. The failure of the South American an-
chovy fishery and the Newfoundland cod fishery are other such
situations and more recently fishery scientists have been predict-
ing the collapse of the North Sea cod fishery �1�.

Trawl nets are responsible for a large proportion of the world’s
catch. Depending on design, they can be operated by one or two
boats and can be towed over the seabed or at any depth in mid-
water. As described by Galbraith et al. �2� trawls are basically
funnel shaped, with their sides extended in front to form wings to
guide fish into the mouth of the net �Fig. 1�. Wardle �3� discusses
the behavior of fish on encountering trawl fishing gear and de-
scribes how, on entering the mouth of a net, many fish will turn
and swim forward, holding station, matching the speed of the net.
As they become exhausted, there is a change in behavior and they
turn again and seek a clear visual path back through the net to the
cod-end.

The cod-end is the rearmost part of a trawl net. It is where the
catch accumulates and where most fish escapes take place. Over
the last 30 years, it has been the subject of intensive research,
primarily, to ensure the release of juvenile target and nontarget
species. The bulk of this research has been concerned with the
experimental testing, at sea, of new designs of the trawl cod-end.
There have also been efforts to develop predictive methods based
on an understanding of the underlying physical and biological
mechanism that govern fish escape from the cod-end. Herrmann
�4,5� and Herrmann and O’Neill �6� present a predictive model of

fish selection in the cod-end. The model these authors present
requires information on the cod-end geometry, the fish behavior,
the escape process, the fish population structure, and the fish mor-
phology. The cod-end geometry is determined by the interaction
of the water flow, the catch size, and the design and physical
characteristics of the netting.

A number of models of netting deformation have been devel-
oped in recent years. Those of Hu et al. �7�, Lee et al. �8�, Takagi
et al. �9�, Le Dret et al. �10�, Priour �11�, Bessonneau and Mar-
ichal �12�, and Niedzwiedz and Hopp �13� are numerical in nature
and can model general three-dimensional deformations. General
theories of networks formed by two families of twines can be
found in Steigmann and Pipkin �14�, Rivlin �15�, and Kuznetsov
�16,17�. A more specific model was developed by O’Neill �18�,
who derives and solves the steady-state differential equations gov-
erning the geometry of an axisymmetric diamond mesh cod-end.
O’Neill �19,20� extends this model by accounting for netting
made from different mesh shapes, twine extension, and the mesh
resistance to opening that arises due to twine bending stiffness.
Although the approach of O’Neill is limited to axisymmetric cod-
ends, it lends itself readily to dimensional analysis, permitting the
identification of significant terms. It also allows the derivation of
some analytic solutions with which it is possible to validate nu-
merical methodologies �21�.

The importance of understanding the dynamic movement of the
cod-end has been highlighted by O’Neill et al. �22�, who investi-
gate sea-state-induced vessel motion and fish selection in the cod-
end and who demonstrate that there is a relationship between the
dynamics of the cod-end and fish escape. These authors identify
the following three categories of longitudinal periodic cod-end
motion:

1. no deformation of the netting and no relative displacement
of the catch

2. small deformation of the netting and recurring catch dis-
placement at the free surface facing the flow

3. large �often asymmetric� deformation of the netting and con-
siderable catch displacement
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In this paper, we derive the equations governing the dynamic de-
formation of a trawl cod-end by considering the dynamic force
balance that acts on a mesh element of the netting surface in the
limit as the mesh size tends to zero. In the same way as O’Neill
�18�, we permit only axisymmetric deformations and assume that
the netting twines are always under tension. Although these con-
ditions are restrictive, they cover two of the three categories of
motion identified in �22� above.

2 Deriving Governing Equations
Following the approach of �18�, we consider a cod-end of cir-

cular cross section, N meshes around and P meshes long and of
mesh size M. We restrict attention to a strip of meshes running the
length of the cod-end and determine from these meshes a profile
or outline of the cod-end �Fig. 2� by considering the force balance
on one of these meshes in the limit as M→0 �Fig. 3�. If we
assume that the meshes under examination are bisected by the
plane z=0, that the x-axis is the axis of symmetry, and that y is the
distance the nodes of these meshes are from the axis of symmetry,
then we can show that the force balance on a mesh element is

2�+�cos �+ cos �+

cos �+ sin �+

0
� − 2�−�cos �− cos �−

cos �− sin �−

0
� − 4�� 0

sin � sin �

0
�

+ ���V cos � − S sin �

V sin � + S cos �

0
� = 2��s

�2

�t2�x

y

0
� �1�

where � is the tension in a mesh bar, � is half the angle between
two adjacent mesh bars, � is the angle the plane �they define�
makes with the plane y=0, �=� /N, is half the angle made by the
intersection of the radial lines through two nodes of a mesh either
side of the plane z=0, �� is the area of a mesh element and equal
to 2�yM cos � /N, � is the density per unit length of the netting
twine, V and S are the tangential and normal components of the
surface force acting per unit area of netting, and �s is the incre-
mental distance along the netting twine. Thus, s is the distance
along the twine and follows a zigzag path, and accordingly �s for
a mesh element is equal to M.

On defining T=2N�, dividing the above expression by �s and
taking the limit as �s→0, M→0, N→	, and NM remains con-
stant, the x- and y-component equations of the force balance be-
come

��T cos � cos ��
�s

+ 2�y�V cos � − S sin ��cos � = 2N�
�2x

�t2 �2�

��T cos � sin ��
�s

− T
sin2�

y
+ 2�y�V sin � + S cos ��cos �

= 2N�
�2y

�t2 �3�

We also have the following relationships between x, y, and s:

cos2� = 1 −
4�2y2

N2M2 = � �x

�s
�2

+ � �y

�s
�2

�4�

which, on differentiating, yields

−
4�2y

N2M2

�y

�s
=

�2x

�s2

�x

�s
+

�2y

�s2

�y

�s
�5�

Because

tan � =
�y

�x

we have

cos � cos � =
�x

�s
cos � sin � =

�y

�s

sin2�

y
=

4�2y

N2M2

Substituting these identities into Eqs. �2� and �3� gives

T
�2x

�s2 +
�T

�s

�x

�s
+ 2�y

�x

�s
V − 2�y

�y

�s
S = 2N�

�2x

�t2 �6�

T
�2y

�s2 +
�T

�s

�y

�s
− T

4�2y

N2M2 + 2�y
�y

�s
V + 2�y

�x

�s
S = 2N�

�2y

�t2 �7�

which when inserted into �5� gives

Fig. 1 A cod-end and its position on a demersal trawl

Fig. 2 Coordinate system and the strip of meshes under
consideration
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�T

�s
− T

8�2y

N2M2 − 4�2y2

�y

�s
+ 2�yV�s,t�

=
2�N3M2

N2M2 − 4�2y2� �x

�s

�2x

�t2 +
�y

�s

�2y

�t2 � �8�

Grouping Eqs. �4�, �7�, and �8�, we can define the following set of
equations:

�T

�s
− T

8�2y

N2M2 − 4�2y2

�y

�s
+ 2�yV�s,t�

=
2�N3M2

N2M2 − 4�2y2� �x

�s

�2x

�t2 +
�y

�s

�2y

�t2 � �9�

T
�2y

�s2 +
�T

�s

�y

�s
− T

4�2y

N2M2 + 2�y
�y

�s
V + 2�y

�x

�s
S = 2N�

�2y

�t2

�10�

� �x

�s
�2

+ � �y

�s
�2

+
4�2y2

N2M2 = 1 �11�

which govern the dynamic motion of a diamond mesh cod-end for
given V�s , t� and S�s , t� and four prescribed boundary conditions.

3 Scaling and Nondimensionalistion
If we introduce the following scalings:

y = NMy�, x = NMx�, s = NMs�, S = S0S�, V = S0V�,

T = N2M2S0T�, t =
t�




where S0 is representative of the forces acting per unit area on the
cod-end netting and 
 is the fundamental angular frequency of the
forcing variable, we get

�1 − 4�2y2�
�T

�s
− T8�2y

�y

�s
+ 2�y�1 − 4�2y2�V�s,t�

=

2


n
2� �x

�s

�2x

�t2 +
�y

�s

�2y

�t2 � �12�

T
�2y

�s2 +
�T

�s

�y

�s
− T4�2y + 2�y

�y

�s
V + 2�y

�x

�s
S =


2


n
2

�2y

�t2 �13�

� �x

�s
�2

+ � �y

�s
�2

+ 4�2y2 = 1 �14�

where, for clarity, the dashed subscripts are suppressed and where

n=	S0 /2�N is representative of the natural angular frequency of
the system.

Typically, S0
0.5cd�wU2
1250 Nm−2 �23�, �
0.02 kgm−1,
and N
100, giving a natural angular period 
0.05 s. Further-
more, it is established in �22� that, by comparing the average
period of longitudinal cod-end pulsing to the most important cy-
clic components of the tension in the trawl warps and of the linear
accelerations of the fishing vessel, the pulsing of the cod-end is a
response to sea-state-induced vessel motion. Hence, the period of
the forcing function will generally be �5 s, implying that the term

2 /
n

2
0.0001. Accordingly, in most situations we can neglect
the inertial terms associated with the acceleration of the netting.
The inertia of the catch will however be important, and although it
is not explicit in the present formulation, it �and also damping
terms� can be introduced via the surface forces per unit area, V
and S.

4 Periodic Solutions
Given that the cod-end dynamics are driven by sea-state-

induced vessel motion, we look for periodic solutions of the fol-
lowing form:

x = �
k

xk�s�eikt, y = �
k

yk�s�eikt, T = �
k

Tk�s�eikt

where the xk, yk, and Tk are all complex functions of s, k
=0,1 . . .	 and where we assume we can express the surface forces
as

S = �
k

Sk�s�eikt, V = �
k

Vk�s�eikt

The governing equations then become

�
k

dTk

ds
eikt − 4�2�

klm

�ykyl
dTm

ds
+ 2ykTl

dym

ds
�ei�k+l+m�t

+ 2��
kl

ykVle
i�k+l�t − 8�3�

klmp

ykylymVpei�k+l+m+p�t

= −

2


n
2�

kl

k2�xk
dxl

ds
+ yk

dyl

ds
�ei�k+l�t

Fig. 3 Coordinate system and the tensile forces acting on one
of the meshes on the strip under consideration
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�
kl

�Tk
d2yl

ds2 +
dTk

ds

dyl

ds
− 4�2Tkyl�ei�k+l�t

+ 2��
klm

�yk
dxl

ds
Sm + yk

dyl

ds
Vm�ei�k+l+m�t

= −

2


n
2�

k

k2yke
ikt

�
kl

�dxk

ds

dxl

ds
+

dyk

ds

dyl

ds
+ 4�2ykyl�ei�k+l�t = 1

where the summations are single, double, etc., according to the
number of subscripts under the summation sign and where the
summation range is from 0 to 	.

We can choose the relevant harmonic components by identify-
ing the products whose subscripts sum to 0, 1, 2, etc. This is
effectively a harmonic balance procedure. We present the first
three sets of equations here.

1. The equations governing the zero harmonic solutions, i.e.,
the static case, are

k + l + m + p = 0

dT0

ds
− T0

8�2y0

1 − 4�2y0
2

dy0

ds
+ 2�y0V0 = 0

T0
d2y0

ds2 +
dT0

ds

dy0

ds
− T04�2y0 + 2�y0S0

dx0

ds
+ 2�y0V0

dy0

ds
= 0

�dx0

ds
�2

+ �dy0

ds
�2

+ 4�2y0
2 = 1

These can be shown to be identical to the steady-state equations of
�18�, where x0, y0, and T0 are the corresponding steady-state so-
lutions.

2. The equations governing the first harmonic solutions are

k + l + m + p = 1

dT1

ds
− 4�2�2y0y1

dT0

ds
+ y0

2dT1

ds
+ 2y0T0

dy1

ds
+ 2y0T1

dy0

ds

+ 2y1T0
dy0

ds
� + 2��y0V1 + y1V0� − 8�3�y0

3V1 + 3y0
2y1V0�

= −

2


n
2�x0

dx1

ds
+ x1

dx0

ds
+ y0

dy1

ds
+ y1

dy0

ds
�

T0
d2y1

ds2 + T1
d2y0

ds2 +
dT0

ds

dy1

ds
+

dT1

ds

dy0

ds
− T04�2y1 − T14�2y0

+ 2�y0S0
dx1

ds
+ 2�y0S1

dx0

ds
+ 2�y1S0

dx0

ds
+ 2�y0V0

dy1

ds

+ 2�y0V1
dy0

ds
+ 2�y1V0

dy0

ds
= −


2


n
2 y1

dx0

ds

dx1

ds
+

dy0

ds

dy1

ds
+ 4�2y0y1 = 0

3. And, those governing the second harmonics are

k + l + m + p = 2

dT2

ds
− 4�2�y0

2dT2

ds
+ 2y0y1

dT1

ds
+ 2y0y2

dT0

ds
+ y1

2dT0

ds
�

− 8�2�y0T0
dy2

ds
+ y0T2

dy0

ds
+ y2T0

dy0

ds
+ y1T1

dy0

ds
+ y1T0

dy1

ds

+ y0T1
dy1

ds
� + 2��V0y2 + V1y1 + V2y0� − 8�3�y0

3V2 + 3y0
2y2V0

+ 3y0
2y1V1 + 3y0y1

2V0� = − 4

2


n
2�x0

dx2

ds
+ x1

dx1

ds
+ x2

dx0

ds

+ y0
dy2

ds
+ y1

dy1

ds
+ y2

dy0

ds
�

T0
d2y2

ds2 + T1
d2y1

ds2 + T2
d2y0

ds2 +
dT0

ds

dy2

ds
+

dT1

ds

dy1

ds
+

dT2

ds

dy0

ds

− 4�2�T0y2 + T1y1 + T2y0� + 2��y0S1
dx1

ds
+ y1S1

dx0

ds

+ y1S0
dx1

ds
+ y0S0

dx2

ds
+ y0S2

dx0

ds
+ y2S0

dx0

ds
+ y0V1

dy1

ds

+ y1V1
dy0

ds
+ y1V0

dy1

ds
+ y0V0

dy2

ds
+ y0V2

dy0

ds
+ y2V0

dy0

ds
�

= −
4
2


n
2 y2

�dx1

ds
�2

+ 2
dx0

ds

dx2

ds
+ �dy1

ds
�2

+ 2
dy0

ds

dy2

ds
+ 4�2�y1

2 + 2y0y2� = 0

Category 1 Motion. The first category of longitudinal periodic
cod-end motion identified in �22� had no deformation of the net-
ting and no relative displacement of the catch. It was, in effect, a
periodic rigid-body motion along the x-axis. A general periodic
solution to this problem, for the case where 
2 /
n

2�1, has the
form

x = x0�s� + �
k=1

	

xke
ikt y = y0�s�, T = �

k

Tk�s�eikt

where the xk are constant for k�0, the 0 subscript denotes the
steady-state solution. Substituting these expressions into the equa-
tions governing the first and second harmonic components gives

k + l + m + p = 1

dT1

ds
− T1

8�2y0

1 − 4�2y0
2

dy0

ds
+ 2�y0V1 = 0

T1
d2y0

ds2 +
dT1

ds

dy0

ds
− T14�2y0 + 2�y0S1

dx0

ds
+ 2�y0V1

dy0

ds
= 0

and

k + l + m + p = 2

dT2

ds
− T2

8�2y0

1 − 4�2y0
2

dy0

ds
+ 2�y0V2 = 0

T2
d2y0

ds2 +
dT2

ds

dy0

ds
− T24�2y0 + 2�y0S2

dx0

ds
+ 2�y0V2

dy0

ds
= 0

In effect, these expressions are the steady-state equations when
the applied forces are V1 and S1 and V2 and S2, respectively. They
will only have the same y0 solution when the expressions for T1
and T2, V1 and V2 and S1 and S2 are identical to those for T0, V0,
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and S0, respectively to within a multiplicative constant.
Thus, these results indicate that for category 1 type motion the

applied surface forces must be such that

S = S0�s��1 + �
k=1

	


ke
ikt�, V = V0�s��1 + �

k=1

	


ke
ikt�

The resulting twine tension will be

T = T0�s��1 + �
k=1

	


ke
ikt�

Indeed, we can easily show that x�s , t�=x0�s�+ f�t�, y�s , t�
=y0�s� and T�s , t�=T0�s�g�t� are general solutions of Eqs.
�12�–�14� when V�s , t�=V0�s�g�t�, S�s , t�=S0�s�g�t�, and 
2 /
n

2

�1 and where the exact form of f and g are determined by the
forcing and/or boundary conditions �the case where the pressure
forces are not dependent on s is a particular example of this type
of motion�.

Category 2 Motion. The second category of motion identified
in �22� had small deformation of the netting and recurring catch
displacement at the free surface facing the flow. A complete analy-
sis of this problem would require the inclusion of the inertial
effect of the catch and is beyond the scope of this paper. Instead,
we investigate the cod-end dynamics that are associated with pe-
riodically varying surface forces. O’Neill and O’Donoghue �24�
demonstrate that the most important hydrodynamic forces acting
on the cod-end netting are the pressure forces acting in the region
of the catch, and hence, we consider the case where 
2 /
n

2�1,
V�s , t�=0 and specify S�s , t� in the region of the catch and set it to
zero elsewhere.

The appropriate form of the harmonic sets of equations are

k + l + m + p = 0

dT0

ds
− T0

8�2y0

1 − 4�2y0
2

dy0

ds
= 0

T0
d2y0

ds2 +
dT0

ds

dy0

ds
− T04�2y0 + 2�y0S0

dx0

ds
= 0

�dx0

ds
�2

+ �dy0

ds
�2

+ 4�2y0
2 = 1

k + l + m + p = 1

dT1

ds
− 4�2�2y0y1

dT0

ds
+ y0

2dT1

ds
+ 2y0T0

dy1

ds
+ 2y0T1

dy0

ds

+ 2y1T0
dy0

ds
� = 0

T0
d2y1

ds2 + T1
d2y0

ds2 +
dT0

ds

dy1

ds
+

dT1

ds

dy0

ds
− T04�2y1 − T14�2y0

+ 2�y0S0
dx1

ds
+ 2�y0S1

dx0

ds
+ 2�y1S0

dx0

ds
= 0

dx0

ds

dx1

ds
+

dy0

ds

dy1

ds
+ 4�2y0y1 = 0

and

k + l + m + p = 2

dT2

ds
− 4�2�y0

2dT2

ds
+ 2y0y1

dT1

ds
+ 2y0y2

dT0

ds
+ y1

2dT0

ds
�

− 8�2�y0T0
dy2

ds
+ y0T2

dy0

ds
+ y2T0

dy0

ds
+ y1T1

dy0

ds

+ y1T0
dy1

ds
+ y0T1

dy1

ds
� = 0

T0
d2y2

ds2 + T1
d2y1

ds2 + T2
d2y0

ds2 +
dT0

ds

dy2

ds
+

dT1

ds

dy1

ds
+

dT2

ds

dy0

ds

− 4�2�T0y2 + T1y1 + T2y0� + 2��y0S1
dx1

ds
+ y1S1

dx0

ds

+ y1S0
dx1

ds
+ y0S0

dx2

ds
+ y0S2

dx0

ds
+ y2S0

dx0

ds
� = 0

�dx1

ds
�2

+ 2
dx0

ds

dx2

ds
+ �dy1

ds
�2

+ 2
dy0

ds

dy2

ds
+ 4�2�y1

2 + 2y0y2� = 0

Although these equations were generated by a harmonic balance
approach, the form of the equations allows solution in a manner
similar to a perturbation expansion, namely, solution of the static
�zero-harmonic� problem and substitution of this into the equa-
tions for the first harmonic, followed by solution of this set of
equations and substitution into the next and so on.

A FORTRAN program was written to solve the sets of equations.
First, an iterative finite difference scheme using central differ-
ences solved the steady state equations. Then the first and second
harmonic equations were solved successively using the NAG rou-
tine D02HAF, which uses a Runge–Kutta–Merson method and a
Newton iteration in a shooting and matching technique. In Fig. 4,
we present the results for the deformed shape of the cod-end for
the case, where

S�s,t� = �1 + 0.25
s

sc
ei
t s � sc

0 s � sc

for three different values of sc of 0.2, 0.4, and 0.6. This loading
can be viewed as a first approximation to the pressure and inertial
loading applied to the cod-end by the catch during surge motion of
the towing vessel. Boundary conditions of


x�s�
s=0 = 0


y�s�
s=0 = 0

�dy�s�
ds

�
s=0

= 1


y�s�
s=1 = 0.05

were used for the analysis. The first three boundary conditions
provide location of the net in space and a constraint of continuity
of slope across the axis of symmetry of the cod-end. The fourth
boundary condition places a constraint on the opening of the neck
of the cod-end ensuring that it remains open at a fixed radius.
Although these boundary conditions are used conveniently for the
solution, the results are plotted in terms of the motion of the
cod-end relative to the open end of the cod-end, which is assumed
fixed in the axial direction.

5 Results
The deformed shape of the cod-end is plotted for the static case

and for the maximum and minimum openings of the mesh of the
cod-end at the face of the catch, sc in Fig. 4.

The results show a clear trend of increased deformed region of
the cod-end, in both the axial and radial directions, with greater sc.
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A trend of increasing diameter of the narrowest portion of the
neck of the cod-end, with increasing extent of the catch, is also
apparent. For the case of sc=0.6, the cod-end has a section of
near-constant radial deflection extending over 
20% of its length
in the static case. It is noteworthy that the oscillatory motion is not
symmetric around the static deformed shape. This is most appar-
ent in the axial deflection of the cod-end. This asymmetry is a
result of the second harmonic term, which arises in the analysis
from the nonlinearity present in the system, and, in particular, the
products of the first harmonic terms, which appear in the set of
equations for “k+ l+m+ p=2.” This asymmetry is also very appar-
ent from the time histories of the x and y motions plotted for the
face of the catch. These are presented in Figs. 5�a�–5�c� and show
that the cod-end spends an appreciable part of the cycle of motion
�
60% � at the larger deformations in the y directions. Referring
to Fig. 6, which depicts the spatial orbits and the geometry of the
mesh at the catch face, it is clear that this implies that the mesh is
at its most open �in the lateral direction� for a substantial portion
of the motion.

6 Discussion
The results presented are for a simplified case where the effect

of the catch has been modeled as a pressure loading that varies
linearly over a portion of the cod-end and varies harmonically
with time. Although the analysis has been limited to the first two
harmonic terms, it is possible to extend the analysis to higher-

order harmonics. Because the sets of equations are solved sequen-
tially, the second harmonic term will remain as it is and the solu-
tion for the third harmonic will introduce a component that is
again symmetric about the static deformed shape, and thus, the
asymmetry of the net motion �which was noted earlier� will not

Fig. 4 Deflected shape of the cod-end for „a… sc=0.2, „b… sc
=0.4, and „c… sc=0.6

Fig. 5 Time history of the cod-end at the catch face for „a…
sc=0.2, „b… sc=0.4, and „c… sc=0.6
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increase further. Changes in the asymmetry will occur by increas-
ing the analysis to the fourth order. Typically in such expansions,
the size of the terms reduces with higher order.

The case examined here is very useful as it confirms the exis-
tence of the type 1 and 2 motions proposed in �22� and demon-
strates that they can be elicited from the system. In �22�, a direct

Fig. 6 Orbits and mesh opening at the catch face for „a… sc=0.2, „b… sc=0.4, and „c… sc=0.6
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link is established between sea-state-induced vessel motion and
cod-end selection. They identify a number of hydrodynamic and
behavioral mechanisms, which may explain their results. Here, we
have shown that by applying a harmonic load to the netting the
lateral mesh opening ahead of the catch is greater than that of the
corresponding static case for 
60% of the time �Fig. 5�, raising
the possibility of a mechanical explanation for the results of �22�.

In reality, the loading on the netting is much more complex than
the description we have used here. This arises from the interaction
of the catch dynamics, the hydrodynamics, and the netting dynam-
ics and will include terms to represent the catch inertia and damp-
ing terms. If these effects are included, then the effective natural
frequency of the coupled catch/cod-end system will be lower and
the assumption that 
2 /
n

2�1 may no longer hold. Consequently,
other nonlinear effects �e.g., multiple coexisting solutions� may
result and, although the constraint on symmetry of the cod-end on
which the current model is based precludes spatial chaos �type 3
motion as described in �22��, temporal chaotic motion may exist.
This will be a topic for further research.

7 Conclusions
A dynamic model of a diamond mesh cod-end subjected to

harmonic forcing has been presented. By solving the resulting
system of equations by the harmonic balance method, it has been
shown that:

• The cod-end can exhibit rigid body motion �type 1 motion
as described by in �22�� under harmonic excitation due to
surge motion if the forces on the cod-end are proportional to
the static loading and vary harmonically.

• The cod-end can exhibit oscillatory deformations �type 2
motion as described in �22�� under harmonic excitation due
to surge motion where the pressure on the cod-end varies
linearly over a portion of the cod-end and varies harmoni-
cally with time. This is a first approximation to the inertial
and drag loading of the catch.

• Due to the nonlinearities in the governing equations, even
harmonic terms arise in the solution and introduce asymme-
try in the motion of the deformed cod-end even when the
excitation is simple harmonic.

• With increasing region over which the forcing is applied, the
amplitude of the oscillation increases.

The work forms the basis for a more complete model of the cod-
end, which includes the inertia of the catch and consequently may
introduce further nonlinear phenomena for example multiple co-
existing solutions and potentially chaotic motion.

Nomenclature
i � 	−1
k � summation index
l � summation index

m � summation index
M � mesh size
N � number of meshes around the cod-end
p � summation index
P � number of meshes along the cod-end
s � coordinate along the netting twine
S � normal component of the surface force acting

per unit area of netting
sc � extent of the pressure loading along the

cod-end
Sk � shape function of the kth harmonic of the nor-

mal component of the surface force acting per
unit area of netting

t � time
T � tension in the cod-end

Tk � shape function of the kth harmonic of the ten-
sion in the cod-end

V � tangential component of the surface force act-
ing per unit area of netting

Vk � shape function of the kth harmonic of the tan-
gential component of the surface force acting
per unit area of netting

x � coordinate
xk � shape function of the kth harmonic of motion

in the x direction
y � coordinate

yk � shape function of the kth harmonic of motion
in the y direction

� � half the angle made by the intersection of the
radial lines through two nodes of a mesh either
side of the plane z=0

�� � area of a mesh element
�s � incremental distance along the netting twine
� � half the angle between two adjacent mesh bars
� � density per unit length of the netting twine
� � angle the plane two adjacent mesh bars define

makes with the plane y=0
� � tension in a mesh bar
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A General Reduced
Representation of One-
Dimensional Frictional Interfaces
A physically-motivated, reduced representation of a general one-dimensional frictional
interface is developed. Friction is introduced into the system as a state variable and is
modeled by nonlinear springs of large but finite stiffness. The set of equations for the
interface is reduced in a procedure similar to Guyan reduction by assuming that the
system must deform in its quasistatic displacement shapes. The result of this reduction is
that the degrees of freedom internal to the interface are removed from the analysis and
only the boundary degrees of freedom are retained. The reduced system is then special-
ized to the case of a bar on a frictional surface. For this problem, a second reduction is
made by noting that the time derivative of the friction force on the stuck block nearest the
slip zone is much greater than the time derivatives of the friction forces elsewhere.
Therefore only the friction force on the stuck block nearest the slip zone needs to be
updated at each time step. The reduced representation developed in this paper is com-
pared with a formulation from the literature and it is seen that the two match very closely
and that the reduced representation is far less computationally intensive.
�DOI: 10.1115/1.2745375�

Introduction
It has been estimated that damping due to relative motion in

frictional joints accounts for up to 90% of the total structural
damping in many large built-up structures �1�. In most structures,
this damping occurs due to microslip, or slip of only a small
portion of the interfaces between contacting sections of the joints.
When an interface undergoes microslip, the natural modes and
frequencies of the structure near the interface are dependent upon
the amplitude of the applied forcing and so the problem is non-
linear; consequently, damping due to microslip in joints has not
been systematically incorporated into contemporary structural dy-
namics simulation. Instead, damping due to microslip in joints has
traditionally been incorporated through linear damping models
�e.g., modal or Rayleigh damping� with parameters chosen to
match experimental results �2�. However, the growing need for
predictive structural dynamics simulation has necessitated physi-
cally motivated joint models that do not need to be fit to experi-
mental data �3�. Perhaps the most obvious method of incorporat-
ing joints into structural finite element models is to mesh the
joints finely enough that all relevant joint behavior is captured.
Unfortunately, due to the tremendous difference between the time
scales intrinsic to the joint dynamics and the larger structure’s
dynamics, this method results in extremely small elements in the
joint and prohibitively small time steps �4�. A great deal of litera-
ture has focused on incorporating the effects of frictional contacts
into finite element models �e.g., �5–8��. A significant portion of
this literature has attempted to derive reduced order models ca-
pable of efficiently incorporating the constitutive response of
joints into a larger structural model. Among these are parallel-
series Iwan models, Menq’s receptance method, and series-series
Iwan models.

One of the earliest efforts to devise constitutive models of joints
was the work of Iwan, which considered parallel and series ar-
rangements of springs and sliders �Fig. 1� �9,10�. Iwan proposed a
continuum of series elements arranged in parallel with break-free
forces � given by a two parameter, band-limited probability den-

sity function in Ref. �9�. He applied this model to actual experi-
mental data taken from a jointed structure by choosing the two
parameters defining the break-free force distribution in order to
match the experimental data as closely as possible. The resulting
model matched the experimental data fairly well.

Iwan’s parallel-series model has been improved by Segalman
using observations regarding the relationship between frictional
energy dissipation and forcing amplitude made by Goodman in
Ref. �11�. Goodman conjectured that any system of elastic com-
ponents held together by a normal load, and perturbed by an os-
cillatory tangential load, dissipates energy at a rate proportional to
the forcing amplitude to the third power if the area of the slip zone
increases linearly with the forcing amplitude. However, experi-
ments have shown that real joints exhibit energy dissipation pro-
portional to the 2.5th–2.9th power of the forcing amplitude, with
the departure from Goodman’s hypothesis possibly being due to
the inaccuracy of the Coulomb friction model �12�. Segalman has
used these energy dissipation considerations in Refs. �4,12–14� to
devise more appropriate probability density functions ���� for the
break-free force � of the sliders in Iwan’s parallel-series model. In
Ref. �12�, Segalman showed that for a parallel-series Iwan model
undergoing microslip, energy dissipation is proportional to the
third power of the forcing amplitude if ���� is nonsingular near
�=0, while energy dissipation is proportional to the �3+��th
power of the forcing amplitude with −1���0 if ����=�� near
�=0. Thus the experimentally observed relationship between en-
ergy dissipation and forcing amplitude can be accounted for by
choosing ���� to have a weak singularity at �=0. Segalman re-
fined this model in Ref. �14� by choosing a more complicated
form of ���� defined by four parameters, which are chosen to
match either experimental data or data from a finely meshed finite
element model of the joint.

In addition to Segalman, a number of other researchers have
built upon Iwan’s parallel-series model. Song et al. developed a
model of a jointed beam structure using parallel-series Iwan ele-
ments in Ref. �15�. This model uses the same two parameter band-
limited distribution function for the slider strengths that Iwan used
in Ref. �9�, but in this work the parameters are chosen to fit ex-
perimental data using a neural network. Deshmukh et al. �16�
considered a discrete parallel-series Iwan model in which each of
the sliders was allowed to have mass. They proposed a collocation
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procedure for fitting the stiffness and break-free force of each of
the Iwan elements to experimentally observed softening curves
and studied the convergence behavior of the model with increas-
ing numbers of elements. Levine and White �17� deduced Iwan
parameters for a model of the joints between the Cassini space-
craft and the Huygens probe by examining shifts in frequency
response as excitation amplitude was increased. The primary limi-
tation of all of these parallel-series Iwan models is that they are
empirical and do not model the actual interface physics taking
place. Because of this, model parameters must be chosen to fit
experimental data or results from a finely meshed finite element
model and so the method is not predictive.

Another approach to incorporating frictional contacts into struc-
tural models is the receptance method developed by Menq in
Refs. �18–20�. The first step in this approach is to solve the linear
problem posed by the structure with its frictional contacts re-
moved. The reaction forces at the contacts are then approximated
using Fourier series and the receptances of the linear finite ele-
ment model are used to find the displacements induced by these
reaction forces. Menq �18� developed this method for single point
frictional contacts and as a result, the method did not match ex-
perimental data well for high normal loads �i.e., the microslip
regime�. In order to rectify this, Menq �19� extended the recep-
tance method to incorporate distributed friction by considering the
contact to be a flexible bar resting on a surface. Menq �20� ob-
served that the distributed contact model agreed much more
closely with experimental data than did the single point contact
model. The primary drawback of the receptance approach is that
for real frictional contacts that are more complicated than the
simplified single point contact considered in Ref. �18� and the bar
contact considered in Ref. �19�, there is no straightforward way to
determine “effective” properties of the simplified contacts that
will accurately represent the more complicated real contacts.

A third approach to modeling frictional interfaces is the series
arrangement of series Iwan elements. Despite being a more natu-
ral model of interface behavior than the parallel-series Iwan
model, the series-series model has not received as much attention
in the literature. Menq �19� appears to be one of the first to con-
sider such a model as part of his effort to incorporate distributed
contact into his receptance approach. Deshmukh et al. �21� con-
sidered a discrete series-parallel-series Iwan model of a bar on a
surface and used the collocation procedure proposed in Ref. �16�
to choose model parameters that fit a theoretical prediction of the
frictional shear stress distribution obtained from shear-lag theory.
Quinn and Segalman considered a series-series Iwan model of a
massless bar on a surface in Ref. �22� and showed that this model
can reproduce the experimentally observed power-law relation-
ship between energy dissipation and forcing amplitude if the spa-
tial distribution of slider break-free forces is chosen appropriately.
Quinn had previously considered a discrete model of a bar with
mass on a surface in Ref. �23� and obtained numerical results for
this system by integrating the equations of motion. Quinn and
Segalman �22� compared the theoretical predictions of the mass-
less series-series Iwan model from Ref. �22� with the numerical

results from a model like the one presented by Quinn in Ref. �23�
and concluded that, for small forcing frequencies and amplitudes,
the dynamics within the bar has very little effect on its response.

The work presented in this paper develops a physically-
motivated, reduced representation of a general one-dimensional
frictional interface. Friction is introduced into the system as a
state variable and is modeled by nonlinear springs of large but
finite stiffness. This state-space implementation of friction allows
for the reduction of the system of equations describing the inter-
face in a procedure similar to Guyan reduction �24�. In this pro-
cedure, the system is assumed to deform only in its quasistatic
displacement shapes. The result of this reduction is that the de-
grees of freedom �dof� internal to the interface are removed from
the analysis and only the boundary dof are retained. After devel-
oping this reduced representation of general one-dimensional fric-
tional interfaces, this paper specializes the result to the case of a
bar on a frictional surface that was considered in Refs. �22,23�.
For this problem, a second reduction is made by noting that the
time derivative of the friction force on the stuck block nearest the
slip zone is much greater than the time derivatives of the friction
forces elsewhere, which can therefore be neglected. The result is a
reduced representation of a bar on a frictional surface that could
perhaps be incorporated into a larger structural model. Although
this paper only discusses the specialization of the formulation de-
veloped here to the problem of a bar on a frictional surface, this
formulation is general and can be specialized to any one-
dimensional problem.

The approach developed in this paper offers several advantages
over those from the literature that were previously discussed.
First, it requires far less computational expense than other formu-
lations. Secondly, the approach developed here is physically mo-
tivated and so model parameters have direct physical interpreta-
tion. This could allow for truly predictive simulation. Finally, this
approach is more systematic than other methods in that it could
potentially be developed from the same finite element approach
used to create the larger structural model.

Development of Full System Equations
Consider a general one-dimensional structure with N nodes,

each with a single dof xi, where i=1, . . . ,N. Let the structure have
mass and stiffness matrices M and K, respectively, and allow Cou-
lomb friction to act between some or all of the nodes and ground.
Denote the coefficient of friction by � and the normal load on the
ith node by qi. Now let

�v1 ¯ vN�T � �ẋ1 ¯ ẋN�T

where an overdot denotes differentiation with respect to time. Par-
tition x and v into an a-set containing the boundary dof and a d-set
containing the internal dof such that

x � �xa

xd
� and v � �va

vd
�

Denote the numbers of dof in the a-set and d-set as Na and Nd,
respectively. Let the a-set dof be loaded by some external applied
load Fa�t� and assume that the d-set dof are not subjected to any
external load. Then the governing equation for this system is

Mẍ + Kx = �Fa�t�
0Nd,1

� − �Ga

Gd
� � F�t� − G �1�

where 0z,y denotes a z by y zero matrix and Ga and Gd denote the
friction forces on the a-set and d-set, respectively. The positive
direction for each friction force Gi is taken to be opposite the
positive direction for the corresponding xi.

In order for Eq. �1� to be of any use, the friction forces G must
be defined. In this paper, friction is incorporated into Eq. �1� by
making each frictional force a state variable and by using the
constitutive law illustrated in Fig. 2. The “frictional stiffness” kf is
chosen to be much larger than k. Note that Segalman has observed

Fig. 1 Series „left… and parallel „right… Iwan elements and their
associated force-displacement relations
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that a similar equation governs the slider displacement, and hence
the friction force, in the single dof spring-slider system considered
in Ref. �13�. Also note that this approach to modeling friction is
equivalent to connecting each of the nodes to ground through a
series Iwan element. It is convenient to write the constitutive law
from Fig. 2 as

Ġ = Av �2�
where

A = �
a1 0 ¯ 0

0 a2 � ]

] � � 0

0 ¯ 0 aN

	
and

ai = 
 0 if �Gi� � �qi and sgn�Gi� = sgn�ẋi�
kf otherwise

�
Development of Reduced Representation

The system defined by Eqs. �1� and �2� is a system in the 3N
state variables x, v, and G. This system can be reduced from 3N to
3Na+Nd state variables using a procedure similar to Guyan reduc-
tion �24� if it is assumed that the structure deforms in the shapes
that it takes if all the d-set dof are massless and the a-set dof are
given unit displacements. The use of these quasistatic displace-
ment shapes is motivated by Quinn and Segalman �22�. In that
work, the continuum problem posed by a flexible bar resting on a
surface with Coulomb friction and subjected to a periodic load is
discussed and it is stated that a closed form solution to this prob-
lem exists only when inertial effects are neglected. A discrete
formulation of the problem is then considered and it is seen that,
for forcing amplitudes much smaller than the force required to
induce full slip and forcing frequencies much smaller than the
fundamental frequency of the bar, the energy dissipation per forc-
ing cycle predicted by the discrete model that includes mass dif-
fers very little from the theoretical prediction that does not include
mass. Thus it seems a reasonable assumption to say that, for small
forcing frequencies and amplitudes, the bar deforms in its quasi-
static displacement shape. Extension of this logic suggests that,
for small forcing frequencies and amplitudes, a general one-
dimensional structure will deform in its quasistatic displacement
shapes.

To find the quasistatic displacement shapes, consider the d-set
partition of Eq. �1� and ignore mass effects,

Kdaxa + Kddxd = − Gd �3�

where, for example, Kda denotes the d-set rows and a-set columns
of K. Equation �3� can be solved for xd,

xd= − Kdd
−1Gd − Kdd

−1Kdaxa �4�

This expression for xd can be differentiated and the friction law
from Eq. �2� can be applied to produce

vd= − �Kdd + Add�−1Kdava �5�

The displacement and velocity of the structure, x and v, can now
be written in terms of the displacement and velocity of the a-set,
xa and va, as follows:

x = T1xa − � and v = T2va �6�
where

T1 � � INa

− Kdd
−1Kda

� � � � 0Na,1

Kdd
−1Gd

� T2 � � INa

− �Kdd + Add�−1Kda
�

and Iz denotes a z�z identity matrix. Note that this reduction is
different than Guyan reduction in that the position and velocity
must be represented using different transformations.

Substituting the transformations of Eq. �6� into Eq. �1� and
premultiplying the entire equation by T2

T results in

T2
TMT2v̇a + T2

TK�T1xa − �� = T2
T�F − G�

or

Meffv̇a + Keffxa − KadKdd
−1Gd = Fa − Ga �7�

where

Meff � T2
TMT2 and Keff � Kaa − KadKdd

−1Kda

It should be noted here that Meff varies with time due to its de-
pendence on the matrix Add, which depends upon which nodes are
slipping and which are sticking.

Using Eq. �7� it is possible to track the a-set dof without know-
ing the d-set dof. However, integration of Eq. �7� does require
knowledge of the friction forces G at each time step, so it is
necessary to have an equation that gives the derivatives of these
friction forces in terms of the a-set dof. Such an equation can be
found by substituting v from Eq. �6� into the friction law from Eq.
�2�,

Ġ = � Aaa

− Add�Kdd + Add�−1Kda
�va �8�

By collecting Eqs. �7� and �8�, one obtains the equations of the
reduced system

M̃
d

dt�
va

xa

Ga

Gd

	 + K̃�
va

xa

Ga

Gd

	 = �
Fa

0Na,1

0Na,1

0Nd,1

	 = � Fa

02Na+Nd,1
� �9�

where

K̃ � �
0Na,Na

Keff INa
− KadKdd

−1

− INa

− Aaa

Add�Kdd + Add�−1Kda

02Na+Nd,2Na+Nd 	 ,

M̃ �� Meff 0Na,2Na+Nd

02Na+Nd,Na
I2Na+Nd

�
This system has 3Na+Nd state equations as opposed to the full
system which has 3N.

Specialization to a Bar on a Surface
All of the preceding analysis applies to general one-

dimensional structures with Coulomb friction. However, further
reduction of the problem can be discussed within the context of a
specific structure and loading scenario. Toward this end, consider
a flexible bar of stiffness EA /L and uniformly distributed mass
Mb �Fig. 3�. The bar is fixed at its left end and is subjected to an
arbitrary normal load distribution. Let the bottom surface of the

Fig. 2 Graphical „l… and mathematical „r… representations of
friction law
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bar experience Coulomb friction and let the right end be loaded by
some periodic applied force. This system can be discretized by
splitting the bar into N rigid blocks of mass m�Mb /N that are
connected by springs of stiffness k�NEA /L and are subjected to
normal loads in accordance with the normal load distribution. This
system can be described by Eqs. �1� and �2� with �xa �xd

T�
= �x1 �x2¯xN�,

M = mIN and K = k�
1 − 1 0 ¯ ¯ 0

− 1 2 − 1 0 ]

0 − 1 2 − 1 � ]

] � � � � 0

] 0 − 1 2 − 1

0 ¯ ¯ 0 − 1 2

	
Reduction in the size of Eq. �9� can be accomplished for this

example if one notes that, at each time step, the derivatives of the
friction forces on all but one of the blocks are negligible. To see
this, note that at any given time, there will be a region of slipping
blocks near the applied load and the remainder of the blocks will
be stuck. Call this region of slipping blocks the slip zone and
denote the stuck block nearest the slip zone as the sth block. Now
note that the derivatives of the friction forces on the slipping
blocks are identically zero. In addition, the derivatives of the fric-

tion forces in the stick zone are given by Ġi=kfvi where i
=s , . . . ,N. Equation �5� can be rearranged and specialized to this
example to get the following equation for the velocities of the
d-set blocks:

�Add + Kdd�vd = k� va

0Nd−1,1
� �10�

The velocities of the blocks in the stick zone are given by the �s
−1�th through Nd

th rows of Eq. �10� for s�1,


�0Nd−s+2,s−2 kfINd−s+2� + k� 01,s−3 − 1

0Nd−s+1,s−3 0Nd−s+1,1

2 − 1 0 ¯ 0

− 1 2 − 1 � ]

0 � � � 0

] � − 1 2 − 1

0 ¯ 0 − 1 2
	��

v2

]

vs−1

- - -

vs

]

vN

	 = 0Nd−s+2,1

Note that it is not a contradiction for a stuck block to have non-
zero velocity because friction has been modeled by nonlinear
springs of large but finite stiffness kf. Also note that it is assumed
here that s�1, and that for the special case where s=1 one can
proceed similarly. By moving the term involving vs−1 to the right-
hand side, the previous equation can be rewritten as

B�vs

]

vN
	 = �

vs−1

0

]

0
	 �11�

where

B ��
	 + 2 − 1 0 ¯ 0

− 1 	 + 2 − 1 � ]

0 � � � 0

] � − 1 	 + 2 − 1

0 ¯ 0 − 1 	 + 2
	 and 	 �

kf

k

Equation �11� can be used to find the velocities of the stuck blocks
if the matrix B can be inverted. The inverse of B can be approxi-
mated as

B̃−1 � �
b b2 b3

¯ bNd−s+1 bNd−s+2

b2 b b2
� bNd−s+1

b3 b2 b b2
� ]

] � b2
� � b3

bNd−s+1
� � � b2

bNd−s+2 bNd−s+1
¯ b3 b2 b

	 �12�

where

b � �	 + 2�−1

It is easily confirmed that

BB̃−1 = I + O�b2�

If kf is chosen to be much larger than k so that b is small, B̃−1 is
a good approximation of B−1. From Eqs. �11� and �12�, it is seen
that

�vs ¯ vN�T = �b b2
¯ bNd−s+2�Tvs−1 �13�

and thus the derivatives of the friction forces on the blocks in the
stick zone are

Fig. 3 Flexible bar on a surface „top… and its discrete repre-
sentation „bottom…
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�Ġs ¯ ĠN�T = kf�b b2
¯ bNd−s+2�Tvs−1 �14�

It is seen that the derivative of the friction force on the second
stuck block is smaller than that on the first stuck block by a factor
of b, the derivative of the friction force on the third stuck block is
smaller than that on the first stuck block by a factor of b2, etc.
Thus, if kf is chosen to be much larger than k so that b is small, it

is reasonable to say that the only nonzero friction derivative is Ġs

�i.e., Ġi=0∀ i�s�. Note that this is consistent with Menq’s obser-
vation in Ref. �19� that as the stiffness of his elastoplastic layer
approached infinity, the frictional shear distribution over his bar
approached a step function.

For the sth block, the friction law from Eq. �2� produces

Ġs = kfvs �15�

and, differentiating Eq. �4�,

vs = 
 va if s = 1

− �Kdd
−1�s̃Ġd − �Kdd

−1�s̃Kdava if s � 1�
where the notation �Kdd

−1�s̃ denotes the s̃th row of Kdd
−1 and s̃=s

−1. Because Ġi=0∀ i�s, this simplifies to

vs = 
 va if s = 1

− �Kdd
−1�s̃,s̃Ġs − �Kdd

−1�s̃Kdava if s � 1� �16�

where the notation �Kdd
−1�s̃,s̃ denotes the s̃th, s̃th entry of Kdd

−1. Sub-

stituting Eq. �16� into Eq. �15� and solving for Ġs shows that

Ġs = 
 kfva if s = 1

− �1 + kf�Kdd
−1�s̃,s̃�−1kf�Kdd

−1�s̃Kdava if s � 1
� �17�

Thus, instead of integrating Eq. �9�, one can simply update the
a-set variables using

�Meff 0

0 1
� d

dt
�va

xa
� + � 0 Keff

− 1 0
��va

xa
�

= �Fa�t� + KadKdd
−1Gd − G1

0
� �18�

and then find the stuck block nearest the slip zone and update its
friction force using Eq. �17�. Thus the general system of 3Na
+Nd state equations expressed in Eq. �9� has been reduced for this
particular example to a system of only three state equations.

In order to integrate Eqs. �17� and �18�, one must find the stuck
block nearest the slip zone, or the sth block, at each time step. The
expression for matrix A listed in Eq. �2� indicates that in order to
determine whether or not a given d-set block is stuck, the sign of
its velocity must be checked. However, this requirement can be
avoided because it can be shown that if the d-set blocks are mov-
ing, they must be moving in phase with the a-set block �i.e.,
sgn�vi�=sgn�va� for i=2,3 , . . . ,N�. Therefore, the coefficients ai
in Eq. �2� can be rewritten as

ai = 
 0 if �Gi� � �qi and sgn�Gi� = sgn�va�
kf otherwise

� �19�

Thus it is not necessary to determine the velocities of the d-set
blocks in order to find the sth block while integrating Eqs. �17�
and �18�. Instead, the conditions indicated in Eq. �19� can be
checked in order to determine whether or not a given block is
stuck. An efficient algorithm for finding the sth block has been
developed but is not discussed here.

A final issue that must be discussed in relation to the problem of
Fig. 3 is the computation of Meff. Using Eqs. �6� and �7�, it can be
shown that for this specific problem,

Meff � m�1 + Kad�Kdd + Add�−1�Kdd + Add�−1Kda�

Note that the total mass lumped at the a-set block, Meff, depends
upon how much of the interface is slipping due to its dependence
on the matrix Add. According to the expression above, it is neces-
sary to invert the matrix �Kdd+Add� at every time step in order to
compute Meff. However, this time consuming requirement can be
loosened by noting that the ith block cannot slip unless all the
blocks to its right, or the 1st through �i−1�th blocks, slip. There-
fore, there are only N possible values of the matrix Add,

Add � �
s=2

N+1� 0s−2,s−2 0s−2,N−s+1

0N−s+1,s−2 kfIN−s+1
� �20�

where s=2 and s=N+1 correspond to the entire d-set sticking and
slipping, respectively. Prior to integrating Eq. �18�, the value of
Meff for each value of s can be computed by letting Add assume
each of the values listed in Eq. �20�. Then, while integrating Eq.
�18�, one can retrieve the appropriate value of Meff based upon the
value of s. The initial computation of the various values of Meff
can be very costly from a computational standpoint for large N
because this process requires inversion of N matrices of size N
−1�N−1. However, the computational cost of this process can
be greatly reduced if, instead of evaluating Meff at each of the N
admissible values of s, one only evaluates Meff at p admissible
values of s, where p
N. To visualize this procedure, imagine
plotting the value of Meff for s=2,3 , . . . ,N+1 in order to obtain
an Meff vs s curve. Then by only evaluating Meff at p admissible
values of s, one is sampling the Meff vs s curve at p values of s. To
evaluate Meff at values of s other than the p sampling points, one
simply linearly interpolates the Meff vs s curve between the sam-
pling points. The number of points p required to obtain accurate
values of Meff at intermediate values of s depends upon the nature
of the Meff vs s curve. For the computational example problem
considered later in this paper in which the density and normal load
distribution are both uniform, the Meff vs s curve is nearly linear
and p=2 is sufficient. More complicated scenarios, such as a non-
uniform normal load or a nonuniform density, may destroy the
linearity of the Meff vs s curve and necessitate larger values of p.
This matter will be the subject of future work.

Although this paper only discusses the specialization of Eq. �9�
to the problem of a bar on a frictional surface, the approach pre-
sented here can be used to specialize Eq. �9� to any one-
dimensional problem. Thus, a reduction similar to the one used to
produce Eq. �17� can be performed in order to obtain an equation
for the time derivative�s� of the friction force�s� on the edge�s� of
the slip zone�s� in a more complicated problem. In addition, an
approach similar to the one presented above can be used to esti-
mate Meff based upon the slip state of the structure.

Comparison of Formulations
In order to gauge the merit of the approach derived in this

paper, it was compared to the formulation derived by Quinn in
Ref. �25�. In that work, Quinn considered the system of Fig. 3. He
noted that the discontinuity in the Coulomb friction model at zero
velocity leads to numerical difficulties when integrating the equa-
tions of this system and developed a regularization of Coulomb
friction that avoids these problems. This regularization is continu-
ous at zero velocity but approaches the traditional Coulomb fric-
tion model as a smoothing parameter � approaches zero. Quinn
observed that by modeling friction using this regularization, the
equations describing the system of Fig. 3 can be integrated using
time steps 2–3 orders of magnitude larger than those required if
the traditional Coulomb friction model is used.

The model presented by Quinn in Ref. �25� was chosen for
comparison because it is, in a sense, the starting point for the
proposed reduction procedure. The model of the system from Fig.
3 proposed by Quinn and the model expressed in Eqs. �1� and �2�
differ only in the friction law used. Therefore, by comparing with
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the work of Quinn, one can see the effect that the proposed reduc-
tion has on both the results and the computational cost of the
analysis.

Before proceeding with a comparison to Quinn’s formulation,
Eq. �17� must be modified slightly to avoid numerical difficulties,

Ġs = 
 kfva + cv̇a if s = 1

− �1 + kf�Kdd
−1�s̃,s̃�−1kf�Kdd

−1�s̃Kdava if s � 1
� �21�

When the entire bar is stuck �s=1�, it can be seen that if c=0, then
the very large stiffness in the first row of Eq. �18� results in spu-
rious high frequency content that obscures numerical results.
However, this problem does not arise if critical viscous damping
is applied to the system by choosing

c = 2��Keff + kf�Meff � 2�kfm

The need for such a damping term occurs when friction, which is
modeled as a very stiff spring, acts at a node possessing mass.

Thus it is unnecessary for this term to be included in Ġs for s
�1 because the mass associated with the d-set has been relocated
to the a-set through the proposed reduction procedure. It should
also be noted that if no friction acts on the a-set, this problem
does not arise and the damping term in Eq. �21� is unnecessary.

Equations �18� and �21� were used to simulate the system of
Fig. 3 and the results were compared with those predicted by
Quinn’s formulation. For both formulations, the overall mass and
stiffness of the bar were given unit value so that m=1 /N and k
=N. In addition, the normal load was made uniform and the total
friction force the bar could resist was taken to be unity, so that
�q=1 /N for each block. The applied forcing was F�t�=F sin �t
with F=�=0.25. Note that with the overall mass, stiffness, and
frictional capacity of the bar being unity, F=1 corresponds to the
load that will induce full slip of the interface and �=1 corre-
sponds to forcing at the natural frequency of a single dof repre-
sentation of the bar. Both formulations were implemented for N
=25, 50, 100, 250, and 1000.

For the reduced formulation, the friction spring stiffness was
kf =100k �i.e., 	=100�. The equations were integrated over
3.1 cycles of the applied forcing using a 4th order Runge-Kutta
integration scheme with 
t=0.5�25 /N��10−2 and the energy dis-
sipation per cycle was computed during the 3rd cycle. For Quinn’s
formulation, the friction regularization parameter was taken to be
�=10�
t, just as in Ref. �25�. The equations were integrated over
3.1 cycles of the applied forcing using a 4th order Runge-Kutta
algorithm with 
t= �25 /N��10−2 and the energy dissipation per
cycle was computed during the 3rd cycle. It should be noted that
the reduced formulation requires a timestep that is half the size of
the one required by Quinn’s formulation due to the high frequency
content introduced by the stiff frictional springs used in the re-
duced model. However, the computational results show that, de-
spite its time step requirements, the reduced formulation is still
much faster than Quinn’s formulation. Also note that if no friction
forces act on the a-set, the time step requirements for the reduced

formulation are not as stringent for reasons explained in relation
to Eq. �21�. The total execution time for the two formulations is
shown in Table 1 and the energy dissipation per cycle computed
by the two formulations is given in Table 2.

The results in Table 1 indicate that for this example, the re-
duced formulation provides a drastic reduction in computational
expense when compared with Quinn’s formulation. For example,
when N=1000, the reduced formulation is over 134 times faster
than Quinn’s formulation and offers this computational efficiency
despite requiring twice as many time steps.

In addition to being much more efficient, the reduced formula-
tion appears to be just as accurate as Quinn’s formulation. Table 2
shows that when N is increased from 250 to 1000, the predictions
of energy dissipation per cycle from the reduced formulation and
Quinn’s formulation change by 0.28% and 0.03%, respectively, so
it appears that both predictions are nearly converged for N
=1000. The difference between the computed values of energy
dissipation per cycle from the two formulations for N=1000 is
0.39%.

Figure 4 shows the position of the first block in the 250 and
1000 block systems as predicted by Quinn’s formulation and the
reduced formulation. All of theses predictions agree very closely
and it is difficult to distinguish one from another in Fig. 4. How-
ever, by examining the inset of this plot in Fig. 5 it can be seen
that, for N=250, the reduced formulation predicts a peak displace-
ment roughly 2.6% higher than that predicted by Quinn’s formu-
lation and that, for N=1000, this difference is reduced to 0.3%.
Figure 6 shows the velocity of the first block in the 1000 block
system as predicted by each of the two formulations. Again, it is
difficult to distinguish between the two predictions so it is neces-
sary to examine the inset of this plot in Fig. 7, where it is seen that
the transition from stick to slip excites high frequency dynamics
that decrease in frequency as the slip zone gains mass and be-
comes more flexible. Figure 7 shows that Quinn’s formulation
predicts response at several different frequencies, while the re-
duced formulation is only capable of representing response at a
single frequency. However, because the high-frequency dynamics
is unimportant with respect to energy dissipation, the predictions
of the two formulations are very close. The unimportance of the
high-frequency dynamics is expected and was a key assumption
made in the development of the reduced formulation.

Figure 8 shows the energy dissipation per cycle predicted by
the reduced formulation at several different values of forcing am-
plitude. In addition, a least squares fit to this data is plotted in Fig.
8. By considering a quasistatic continuum model of this problem,
Quinn and Segalman �22� showed that the energy dissipation per
cycle should vary with the cube of the forcing amplitude. As can
be seen in Fig. 8, the relationship between energy dissipation per
cycle and forcing amplitude predicted by the reduced formulation
is in very close agreement with the cubic relationship predicted by
Quinn and Segalman �22�.

Table 1 Total execution time „s… for 25, 50, 100, 250, and 1000 block systems

25 blocks 50 blocks 100 blocks 250 blocks 1000 blocks

Quinn 18 65 258 1917 51313
Reduced 3.6 7 16 43 381

Table 2 Energy dissipation per cycle for 25, 50, 100, 250, and 1000 block systems

25 blocks 50 blocks 100 blocks 250 blocks 1000 blocks

Quinn 0.01052827 0.01062863 0.01051746 0.01047247 0.01046909
Reduced 0.01106833 0.01048365 0.01035432 0.01039909 0.01042853
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Conclusion
A physically-motivated, reduced representation of a general

one-dimensional frictional interface has been developed. Friction
was introduced into the system as a state variable and was mod-
eled by nonlinear springs of large but finite stiffness. This state-
space implementation of friction allowed for the reduction of the
system of equations describing the interface in a procedure similar
to Guyan reduction. In this procedure, the system was assumed to
deform only in its quasistatic displacement shapes. The result of

this reduction was that the degrees of freedom internal to the
interface were removed from the analysis and only the boundary
degrees of freedom were retained. After developing this reduced
representation of general one-dimensional frictional interfaces,
this paper specialized the result to the case of a bar on a frictional
surface that was considered in Refs. �22,23�. For this problem, a
second reduction was made by noting that the time derivative of
the friction force on the stuck block nearest the slip zone is much
greater than the time derivatives of the friction forces elsewhere,
which can therefore be neglected. The result was a reduced rep-
resentation of a bar on a frictional surface that could perhaps be
incorporated into a larger structural model. In addition to devel-
oping this reduced representation, this paper also discussed com-
putationally efficient methods of approximating the effective mass
at each timestep and performing required checks on the velocities
of internal blocks. Finally, the reduced representation of a bar on
a surface developed in this paper was compared with the formu-
lation from Quinn �25� and it was seen that the two match very
closely and that the reduced representation is far less computa-
tionally intensive.

The equations of the reduced representation can be thought of
as describing a superelement that is capable of incorporating the
effect of general one-dimensional frictional interfaces into larger
structural models. This superelement approach offers several ben-
efits over the other methods previously discussed here. First, it is
computationally efficient. For the example problem considered in
this paper, it was seen that the reduced representation is up to 134
times faster than Quinn’s formulation. Secondly, the superelement

Fig. 4 Position of block 1 in 250 and 1000 block systems as
predicted by the reduced formulation and Quinn’s formulation

Fig. 5 Inset A of Fig. 4

Fig. 6 Velocity of block 1 in 1000 block system as predicted by
the reduced formulation and Quinn’s formulation

Fig. 7 Inset B of Fig. 6

Fig. 8 Energy dissipation versus forcing amplitude from re-
duced formulation for N=250
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approach is physically motivated and so model parameters have
direct physical interpretation. This could allow for truly predictive
simulation. Finally, the superelement approach is more systematic
than other methods in that it could potentially be developed from
the same finite element approach used to create the larger struc-
tural model. Future work will attempt to extend the approach of
this paper in order to develop two and three-dimensional finite
element based superelements that can incorporate the effect of
general frictional contacts into large structural finite element mod-
els in a physically motivated manner without excessive computa-
tional burden.
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Constitutive Modeling of the
Stress-Stretch Behavior of
Two-Dimensional Triangulated
Macromolecular Networks
Containing Folded Domains
The mechanical behavior of the red blood cell membrane is governed by the lipid bilayer
which resists changes in surface area and the underlying spectrin network which resists
changes in shape. The constituent spectrin chains of the network consist of a series of
domains along the chain, which exhibit noncovalent interactions. Upon sufficient exten-
sion of a chain, each folded domain undergoes mechanically-induced unfolding after
reaching a chain force between 10 and 35 pN. Individual spectrin chains within the
network experience their first unfolding event at different levels of macroscopic strain
depending on the macroscopic loading conditions and the orientation of each constituent
chain with respect to the macroscopic loading. A microstructurally-informed continuum
level constitutive model is developed which tracks individual chain deformation behavior
as well as the overall macroscopic network stress-strain behavior. Using the introduced
continuum approach and statistical mechanics based models of the chain force-extension
behavior together with a transition state model of domain unfolding; a constitutive model
for the membrane stress-stretch behavior is constructed. Uniaxial tension and simple
shear behaviors of the membrane are simulated incorporating the unfolding of the indi-
vidual chains. A Taylor averaging approach is used as a first approximation to account
for the irregularities in the spectrin network which result in a near plateau-like force
behavior with increasing stretch. �DOI: 10.1115/1.2745373�

1 Introduction
Many protein molecules have multidomain structures which re-

sult in a force-extension behavior with a characteristic sawtooth
pattern due to stretch-induced unfolding of domains along the
molecular chain �Fig. 1�. During a displacement controlled exten-
sion test, the force increases in a nonlinear manner with stretch
until reaching a peak, whereupon there is a drop in the force,
followed by a nonlinear rise to a peak, followed by a drop, and so
on �1–5�. Upon reaching a rate-dependent peak force, a domain
will unfold, releasing an additional chain length which increases
the configurational space available to accommodate the overall
extended chain length. Due to the entropic nature of the single
molecule extension behavior, the increase in configurational space
results in the observed drop in force and the increased compliance
after the force drop.

Single molecule force-spectroscopy has been used to quantify
the force-extension behavior and corresponding mechanically-
induced unfolding of domains along the spectrin molecule �4,5�.
Rief et al. �4� noted that the peak unfolding force is approximately
30 pN when a long chain spectrin molecule is stretched at a rate
of 0.3 �m /s and also identified rate dependence to the peak un-
folding force. Law et al. observed spectrin unfolding to occur at
forces ranging between �10 and �37 pN during the extension of
short �3–4 repeat units� strands of spectrin at extension rates of
1 �m /s �4,5�.

In this paper, a microstructurally-informed continuum level

constitutive model which accounts for the triangulated molecular
network structure is developed which tracks individual chain de-
formation behavior as well as the overall macroscopic network
stress-strain behavior �6�. The force-extension behavior of indi-
vidual chains is modeled using a statistical mechanics representa-
tion of the long chain molecule together with an Eyring-type tran-
sition state model �7� to capture the rate dependence of domain
unfolding. The chain constitutive model taken together with the
network representation determines the effect of individual chain
unfolding events on the overall network stress-strain behavior.

2 Membrane Structure of a Red Blood Cell
The mechanical properties of the red blood cell membrane

are governed by the lipid bilayer, which resists changes in the
membrane surface area of the red blood cell, and the spectrin
network, which resists surface shearing of the membrane. The
surface area stiffness ��500 dyn /cm� is much greater than the
surface shear stiffness ��0.01 dyn /cm�. Hence this membrane is
a two-dimensional analog to a rubbery solid where a rubber ex-
hibits a high bulk modulus ��1 GPa� and a low shear modulus
��1 MPa�. The distinct physical origins of the mechanical behav-
ior of the surface area and that of the surface shear together with
the high contrast in these properties enables separate modeling of
the shear behavior from that of the surface area behavior. Indeed,
in most instances, it is sufficient to approximate the surface area
as remaining constant. Phenomenological neo-Hookean
hyperelastic-type constitutive models have been proposed and
used in early work by Skalak et al. �8� and Evans �9�, and higher-
order hyperelastic models in recent work by Suresh and co-
workers �10,11�. A microstructurally-informed continuum level
model of the large deformation behavior of the spectrin network
has recently been developed by Arslan and Boyce in �6�. The
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Arslan and Boyce model predicts the membrane stress-strain be-
havior based on the force-extension behavior of the constituent
chains and the triangulated network geometry. Arslan and Boyce
also identified the roles of both chain rotation and chain stretching
to the nonlinear stress-strain behavior of the network by examin-
ing networks with linear chain behavior in comparison to net-
works with nonlinear chain behavior. In this paper, the Arslan and
Boyce constitutive model for the spectrin network is enhanced to
take into account the unfolding behavior of the constituent chains.

3 Constitutive Model
In recent years, several investigations have adopted and ex-

tended the framework of statistical mechanics based models for
rubber elasticity �e.g., Flory �12�, Treloar �13�, Boyce and Arruda
�14�� to develop microstructurally-motivated models of biological
materials �e.g., Bischoff et al. �15,16�, Bergstrom and Boyce �17�,
Holzapfel �18�, Qi, et al. �19,20�, Arslan and Boyce �6,21�, Kuhl,
et al. �22��. Our constitutive model for the general membrane
stress-stretch behavior of the spectrin network follows this suc-
cessful methodology �6�. Indeed, a recent review paper �23� high-
lights the need and the trend for models of the behavior of the
various molecular networks of biological cells to properly account
for the translation of the macroscopic strain to the constituent
elements of these networks. The Arslan and Boyce model for the
finite deformation of triangulated networks is reviewed and ex-
tended below in terms of �1� identification of the networked mi-
crostructure and the mapping of macroscopic deformation onto
the corresponding network representative volume element �RVE�;
�2� description of the force-extension behavior of the RVE con-
stituent chains together with a transition-state unfolding criterion;
and �3� construction of a strain energy density function for the
network and its corresponding macroscopic stress-stretch behav-
ior.

3.1 Network Idealization, Representative Volume Element,
and Deformation. The spectrin network of the red blood cell is
found to possess a triangulated network as shown in the micro-
graphs of spread cell membranes �e.g., �24,25��. We note that the
“spread” state of the membrane is a highly biaxially stretched
state; the triangulated network structure is in tact under these large
deformations showing the robustness of the crosslink sites to me-
chanical deformation. Hence, as in �6�, we idealize the microstruc-
ture to be perfectly triangulated as shown in Fig. 2. A unit equi-

lateral triangle is identified as the RVE �Fig. 2�c��. Voronoi
tessellation is used to assess the area affiliated with the RVE �Fig.
2�a��. Therefore the chain density of the network is found to be
�=3 /2Atriangle. A schematic of the undeformed RVE is given in
Fig. 2�c�, where ro is the initial chain end-to-end distance and �A,
�B, and �C represent the orientation of the constituent chains with
respect to the one-direction. In the proposed microstructurally-
informed model, the change in length �the stretching of the
chains� and orientation �the rotation of the chains� of the chains
can be tracked with macroscopic deformation as demonstrated and
discussed in Arslan and Boyce �6�.

An arbitrary macroscopic deformation is mapped onto the unit
cell equilateral triangle RVE. The membrane deformation gradient
F2D is defined in the 1–2 frame as

F2D =
�x

�X
= �F11 F12

F21 F22
�

where x is the deformed position of a material point and X is the
reference position. The RVE is subjected to an arbitrary deforma-
tion gradient giving the stretch of constituent network chains A, B,
C in terms of the macroscopic deformation gradient. The simplic-
ity of the unit cell triangle RVE provides a unique, kinematically-
determined mapping of the macroscopic deformation gradient to
the microscopic network deformation. Denoting the current end-
to-end distance of each chain as ri�i=A ,B ,C�, the axial stretch of
each chain in the network is, �i=ri /ro�i=A ,B ,C� and can be ex-
pressed in terms of an arbitrary deformation gradient as demon-
strated by Arslan and Boyce �6�:

�A = �F11
2 + F21

2 �1/2

�B =
1

2
��F11 − F12

�3�2 + �F21 − F22
�3�2�1/2 �1�

�C =
1

2
��F11 + F12

�3�2 + �F21 + F22
�3�2�1/2

3.2 Force-Extension Behavior of Constituent Chains. The
mechanical behavior of the constituent chains �the spectrin mol-
ecules of the triangulated skeletal network of the red blood cell
are long chain molecules containing many repeat units along the
length of chain between crosslink sites� of the RVE �A ,B ,C� is

Fig. 1 Schematics of the stages of unfolding of a single chain under mechanical
loading. „1… Corresponds to the undeformed chain, with a nonzero end-to-end
distance, „2… corresponds to the nearly fully extended chain when the force
reaches a value that will unfold a domain; a domain then begins to unfold as the
force drops, and „3… corresponds to the chain after one domain has unfolded and
the chain force starts increasing nonlinearly with monotonic stretching again. The
dashed lines showing another level of force drop correspond to a lower extension
rate. The inset of the plot shows how the peak force of unfolding changes with
extension rate „Schematic adapted from †1‡….
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modeled using the non-Gaussian Freely Jointed Chain �FJC�
model �e.g., Treloar �13��.2 The chain force-extension expression
is given by

Pch =
Nkb�

Lc
� �2�

with corresponding chain strain energy,

Uch = kb�N	 r

Lc
� + ln	 �

sinh �


 �3�

where N is the number of Kuhn segments along the chain, kb is
Boltzmann’s constant, � is the absolute temperature, Lc=Nl is the
contour length of the chain, l is the Kuhn segment length, r is the
chain end-to-end distance, and � is the inverse Langevin function.
The Langevin function is defined as L���=coth���− �1 /��, with
the inverse, �=L−1�r /LC�.

To incorporate unfolding of a folded domain in the
microstructurally-informed model �6�, we utilize a transition state
model.

Following transition state theory, a domain can be modeled as
being in one of two states: the folded state, or the unfolded state.
To transfer from the folded state to the unfolded state, an energy
barrier of �G has to be overcome. Following Rief et al. �26� and
Qi et al. �20�, we use the Bell �27� adaptation of the Eyring model
�7�: the energy barrier to translate from one state to the other is
reduced by the applied chain force, Pch, multiplied by the width of
the activation barrier, xu, giving a frequency of unfolding, �,

��Pch� = �o exp	− ��G − Pchxu�
kB�


 = 	 exp	Pchxu

kB�

 �4�

where kB is Boltzmann’s constant, � is absolute temperature, and
	 is a lumped parameter, 	=�o exp�−�G /kB��. 	 and xu are then
obtained from the data of peak unfolding force as a function of the
strain rate. For completeness, we note that the energy barrier to
unfolding depends on the particular folded domain through its
molecular geometry and the nature of intermolecular interactions;
the axial chain force will map to a combination of shear and
normal intermolecular stresses within the domain. Hence, the un-
folding of a domain will be due to some combination of normal
and shear separation and will depend on how the domain is being
loaded. In a long chain molecule with many domains in series, the

domain most favorably oriented to unfold �i.e., the domain which
will unfold at the lowest axial chain force� will be the domain to
unfold; therefore, the experimentally observed unfolding force at
a given rate of extension is repeatable and the effect of the chain
force on lowering the energy barrier is effectively captured by Eq.
�4�.

After a folded domain unfolds, additional chain length is re-
leased from the fold and the contour length increases leading to an
increase in the available configurational space �implying higher
entropy�, and a corresponding drop in the chain force. This behav-
ior of a repeating sequence of a force rise with extension to a peak
followed by a load drop, gives rise to a “sawtooth pattern” �Fig.
1�. Rief et al. �4� have tested the force-extension behavior of long
chain spectrin molecules at different extension rates, observing
unfolding to occur at an average of �27 pN at 0.08 �m /s and
�32 pN at 0.80 �m /s.

Prior to unfolding, the number of the effective rigid links along
the chain is N�t=0�=n−m�t=0��q−1�, where n is the total number of
rigid Kuhn links, m is the number of folded domains, and q is the
effective number of links of length l in a folded domain �19�.
When a domain unfolds, the number of folded domains decreases
by 1, giving m�t=t1�=m�t=0�−1. After one domain unfolds, the ef-
fective number of rigid links at t= t1, N�t=t1� is updated according
to N�t=t1�=n−m�t=t1��q−1�. The contour length,Lc, of the molecule
increases, giving a new contour length of Lc�t=t1�=N�t=t1�l, where l
is the length of the rigid links. The summary of the formulation of
the procedure for force-extension with unfolding is given in Ap-
pendix A.

3.3 Strain Energy Density of the RVE. To determine the
behavior of the network, the strain energy of the RVE, U, is cal-
culated by the summation of the strain energy in each chain. The
strain energy density, U* is given by

U* =
1

2Atriangle
�UA + UB + UC� �5�

where Atriangle is the area of the RVE. Thus, the strain energy
density is given by

UNGC
* =

�

3�kb�N �
i=A,B.C

��iro

Lc
�1 + ln	 �i

sinh �i



− 	 ro

Lc
�o + ln	 �o

sinh �o


�
 �6�

where � is the chain density �=3 /2Atriangle� given earlier, ro is the

2We note here that these flexible molecular chains can be alternatively represented
using the worm-like chain �WLC� model. Qi et al. �20� have found WLC and FJC
models to give quite similar results. Therefore, we only present FJC here.

Fig. 2 Schematic of an area of the triangulated network in „a… the undeformed state, also depicting Voronoi
tessellation „the superposed hexagon… to identify the area of the RVE, and „b… an arbitrary deformed state. Sche-
matic of the isolated „c… undeformed representative volume element, and „d… the RVE when subjected to an
arbitrary loading condition.
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initial end-to-end distance of a chain �i.e., the initial chain length
or distance between cross-links�, �i�i=A ,B ,C� are the constituent
chain stretches defined earlier as a function of the macroscopic
deformation gradient, and �i=L−1��iro /Lc�.

The Cauchy stress is determined by proper differentiation of the
strain energy density function �Appendix B� and is given by

T = � �UA
*

��A
�

��A

�F2D
+

�UB
*

��B
�

��B

�F2D
+

�UC
*

��C
�

��C

�F2D
�F2D

T + hI �7�

Here h is the additional equibiaxial membrane stress �due to the
preservation of area constraint� required to satisfy equilibrium.
The ���i /�F� terms are independent of chain constitutive behavior
and obtained by direct differentiation of the kinematically speci-
fied relationships �Eq. �1�� connecting the stretch of each chain to
the macroscopic deformation.

3.4 Material Properties. The network and chain properties
for ro, l, and Lo are found as discussed in Arslan and Boyce �6�
and are given in Table 1. As discussed in �6�, the initial elastic
stiffness of the model with these properties captures the experi-
mentally reported modulus for the skeletal spectrin network �as
measured, for example, using cell aspiration tests�. The unfolding
properties consist of xu, 	, and �L. These properties are deter-
mined from fitting the model to the AFM data of Rief et al. �4,26�
as given in �19� and therefore capture the experimentally observed
dependence of unfolding force on the extension rate.

4 Results

4.1 Uniaxial Tension. Figure 3�a� shows the Cauchy �true�
and nominal stress versus stretch behavior of the network when
subjected to uniaxial tension in the two-direction. The nominal
stress curve has a plateau-like peak stress region where successive
unfolding events occur at a nominal peak unfolding stress of
0.5 dyn /cm. The first unfolding event happens at a stretch of �
=2.75. In terms of the Cauchy �true� stress, the unfolding stress
increases with each unfolding event due to the decrease in load-
bearing area as the membrane is stretched. Once an unfolding
event occurs in a constituent chain, the macroscopic stress drops
due to the force drop in the chain�s�. After the stress drop, the
stress increases in a nonlinear manner with further extension, but
now with a lower stiffness because of the increase in the compli-
ance of the constituent chains which have experienced an unfold-
ing event.

Figure 3�b� shows the constituent chain behavior during tensile
stretching. Chains B and C are observed to extend and exhibit a
sawtooth force-extension behavior. Chain A does not contribute to
the unfolding events since it is only compressed under this applied
macroscopic stretch.

Figure 4�a� shows the uniaxial stress versus macroscopic
stretch for tension applied in different directions ranging from �
=0 deg to 30 deg. Because of the symmetry, 60 deg loading gives
the same stress response as the 0 deg loading, likewise, 90 deg

loading gives the same response as 30 deg loading. 0 deg loading
reflects uniaxial tension in the one-direction and 90 deg loading
reflects uniaxial tension in the two-direction. The sixfold symme-
try of the undeformed microstructure results in isotropy of the
very initial modulus. A nearly direction-independent behavior is
shown to be retained up to rather large stretches ��=2.2�, showing
the isotropic robustness of the triangulated microstructure. How-
ever, at very large stretch values the developing anisotropy begins
to manifest itself. The first unfolding event occurs at a smaller
macroscopic stretch when uniaxial tension is applied at 0 deg than
in the 30 deg case. This shows that the number of unfolding
events and the degree of deformation is dependent on the loading
direction as the sixfold symmetry condition does not hold at larger
stretches due to the developing microstructural anisotropy as cap-
tured naturally in the microstructurally-informed constitutive
model. In actual networks, there exists some irregularities in the
network structure which may lead to ongoing load and deforma-
tion redistribution within the network �and isotropy to larger
stretches� as macroscopic stretching increases, especially when
unfolding begins to occur in some chains.

In order to achieve a stress-stretch curve that represents the red
blood cell membrane behavior more accurately, a Taylor averag-
ing approach �30� is used. As a first approximation, to account for
a slightly irregular triangulated network, we “average” the behav-
ior of constituent unit triangles inclined at 0 deg, 10 deg, 20 deg,
and 30 deg with the one-direction. It is assumed that each con-

Table 1 Spectrin properties

Model parameters Spectrin network

Initial end-to-end distance, ro �nm� 75
Persistence length, l �nm� 10.25
Initial contour length �nm�, Lo

180
Increase in contour length due to unfolding, �L �nm� 28.8
Activation barrier width, xu �nm� 1.7
	 �
10−6 s−1� 6.0

Fig. 3 „a… Stress-stretch behavior of the membrane under
uniaxial tension in the two-direction at a strain rate of 0.1/s
where Cauchy and nominal stress are compared, „b… constitu-
ent chain force-extension behaviors in the RVE during uniaxial
tension in the two-direction
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stituent triangle experiences the same deformation gradient, F.3

Based on this assumption, the individual Cauchy stress, T, of each
constituent triangle is calculated as described earlier and the mac-
roscopic composite stress is calculated by taking a volume aver-
age of the stress from all constituent triangles. The “average”
curve in Fig. 4�a� depicts the mean of the stress response for
directions: 0 deg, 10 deg, 20 deg, and 30 deg. The dramatic saw-
tooth response obtained for a perfectly triangulated structure is
observed to smooth out to a behavior with lower peaks and lower
drops. In order to achieve an even more precise and smoothened
stress-stretch response, the macroscopic composite stress was as-
certained by calculating the average response for a network com-
prised of unit triangles whose orientation varied in 1 deg inter-
vals; see the “average” curve shown in Figure 4�b�. The numerous
distributed orientations of the chains in the network result in a
plateau-like force behavior in contrast to the “sawtooth” pattern of
the perfectly triangulated network. This plateau corresponds to
simultaneous chain stretching and domain unfolding events taking
place in different chains in the rather irregular network. The un-
folding peaks and drops are contained within a stress band of
mild-fluctuations. This plateau-like behavior gives compliance to

the network that enables large scale deformations at nearly con-
stant stresses.

Figure 5 shows the strain-rate dependence of the stress-stretch
behavior under large stretches for strain rates from I /s to as low as
0.001 /s. When the strain-rate decreases, the stretch at which the
unfolding occurs drops, the peak stress decreases, and the stress
drop decreases. The decrease in the peak stresses and the stress
drops also leads to a plateau-like stress level at very low strain
rates which limits and controls the level of force required for large
deformations.

The initial end-to-end distance ro=75 nm implies a pretension
in the network �6,20�. Figure 6 compares the effect of two differ-
ent initial end-to-end distances �75 nm,125 nm� on the uniaxial
tensile response of the network. When the initial end-to-end dis-
tance is taken to be 125 nm �an initial chain end-to-end distance
close to the initial contour length of the chain�, the areal chain
density decreases which would normally be associated with a de-
crease in modulus. However, the fact that ro=125 nm is close to
the contour length gives an increase in the initial modulus and a
decrease in the extensibility of the network; the unfolding events
are found to initiate at much lower stretch levels. Hence we can
see that network pretension strongly influences the overall me-
chanical behavior.

4.2 Simple Shear. Figure 7�a� shows the shear stress versus
nominal shear strain, tan �, behavior of the network at a shear rate
of 0.1 rad /s. We note that the curves of shear stress in the 12- and

3We recognize that the Taylor approach does not capture the ongoing interplay of
local load and deformation redistributions on the network chains that an actual ir-
regular structure experiences, but feel this first approach to averaging illustrates the
basic influence of a more complex triangulated network structure on the overall
macroscopic stress-strain behavior.

Fig. 4 Stress-stretch behavior of the membrane under uniaxial
tension „a… in a range from 0 deg to 30 deg loading, depicting
the mean stress; „b… in the 11- and the 22-directions, the “aver-
age” curve depicting the macroscopic composite stress
behavior

Fig. 5 The strain-rate dependence of the nominal stress-
stretch behavior of the membrane under uniaxial tension in the
two-direction

Fig. 6 Effect of pretension on the uniaxial stress-stretch
behavior
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the 21-direction are nearly coincident upto a shear strain of
tan �=1.5, demonstrating the robustness of this triangulated mi-
crostructure in providing isotropic mechanical behavior to rela-
tively large strains. At a shear rate of 0.1 rad /s, when shear is
applied in the 12-direction, the first unfolding happens at tan �
=1.97, while for shear in the 21-direction, the first unfolding oc-
curs at tan �=2.2. The shear strains at which the network experi-
ences initial unfolding is very close for shearing in different di-
rections. Figure 7�a� also shows the macroscopic composite shear
stress versus stretch behavior calculated following the Taylor av-
eraging approach as discussed in the case of uniaxial tension
where we average over 1 deg increments between 0 deg and
30 deg. The averaging is seen to result in the plateau-like behavior
once a critical unfolding stress is reached.

Figure 7�b� shows the chain force versus macroscopic stretch
for shearing in the 12-direction. When shear is applied in the
12-direction, only chains B and C deform, stretching and rotating
with the deformation. Chain B compresses until it makes an angle
of �B=90 deg with the 1-direction, it then extends. This delayed
extension results in chain C initiating the unfolding in the overall
RVE. Therefore, the shear stress-shear strain plot shows an initial
unfolding behavior which is identical to chain C’s unfolding be-
havior.

5 Summary
The mechanical behavior of the red blood cell membrane is

governed by the lipid bilayer which resists changes in surface area

and the underlying spectrin network which resists changes in
shape. The constituent chains of the spectrin network consist of a
series of domains along the chain, which exhibit noncovalent in-
teractions. Unfolding of these folded domains can be triggered by
the application of large deformation to the macromolecular net-
work, depending on the extension rate and also the statistical dis-
tribution of the strength of the internal bonds of the module. The
force-extension behavior of a single modular macromolecule ex-
hibits a “sawtooth” pattern due to unfolding giving a sequence of
force rise to a peak followed by a load drop, rise to a peak and
drop, etc. A microstructurally informed continuum level constitu-
tive model which tracks individual chain deformation behavior as
well as the overall macroscopic network stress-strain behavior is
developed by Arslan and Boyce �6�. In this paper, using the intro-
duced continuum approach together with single molecule force-
extension behavior and a transition state model of unfolding, large
deformation behavior of two-dimensional triangulated networks
of biomacromolecules is studied. Uniaxial tension and simple
shear behaviors of the membrane are simulated incorporating the
unfolding of the individual chains. The constituent chains of the
representative volume element �RVE� of the idealized network do
not unfold at the same time since the stretch �and force� in each
chain is different depending on the macroscopic deformation. The
triangulated network provides a more realistic approach to mod-
eling the spectrin network than the “four chain” network represen-
tation �20� of macromolecular membranes since it directly ac-
counts for the network geometry. The triangulated structure is
found to be rather robustly isotropic in mechanical behavior to
very large stretches. However, the individual chain deformations
evolve much differently and each molecule unfolds at different
stretch levels during a macroscopic deformation which amplifies
the effect of developing anisotropy on the mechanical response of
the network. In actual networks, there exists some irregularities in
the network structure which may provide additional robustness to
isotropy as macroscopic stretching increases since the load and
deformation will redistribute amongst the network molecules. In
order to account for the irregularities in the spectrin network
structure, a Taylor model approach is used as a first approximation
for averaging, whereby the same deformation gradient is applied
to RVEs with different initial orientations and the resulting stress
is the volume average of the stress on each RVE. It is found that
the distribution in the orientations of RVEs result in a rather
plateau-like stress-stretch response after reaching a critical stress
level that initiates the first unfolding event; the plateau is due to
the multitude of unfolding events occurring at different stretch
levels balanced by ongoing force increases in other chains. The
plateau controls the level of stress required for the deformation of
the red blood cell membrane. Therefore, the averaging approach
gives a first approximation of the stress-strain response of the red
blood cell membrane accounting for aspects of distributions in the
network structure. The effect of the strain rate on the mechanical
response is also investigated in this paper. When the strain rate is
as low as 0.001 /s, the stress peaks and drops become less appar-
ent due to the decrease in the critical stress level needed to initiate
unfolding as the rate is reduced; the predicted network rate depen-
dence is strongly dependent on the rate-dependence of single mol-
ecule unfolding for which there is currently limited data �4,5�.
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Appendix A: Procedure for Force-Extension With Un-
folding

The Monte Carlo algorithm used to model the random unfold-
ing events can be summarized as follows:

Fig. 7 „a… Stress-stretch behavior of the membrane under
simple shear in the 12-direction and in the 21-direction, the “av-
erage” curve depicting the macroscopic composite stress be-
havior; „b… chain force-extension behavior in the RVE under
simple shear in the 12-direction
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1. A chain is subject to a stretch and its force at that stretch is
determined using the FJC model of Eq. �2�;

2. The unfolding frequency is calculated using Eq. �4�;
3. The probability of unfolding a domain is calculated accord-

ing to dp=mt��t, where mt is the number of folded domains
in the chain at time t;

4. The domains are sampled to determine their unfolding sta-
tus;

5. If unfolding occurs, the contour length L0 of the chain is
updated and the force on that chain is recomputed using its
new, updated structural parameters;

6. The steps are repeated where the macroscopic stretch is in-
crementally increased in each step.

Rief et al. �26� and Qi et al. �20� applied the Monte Carlo simu-
lation algorithm to various molecules including dextran and spec-
trin to model the single molecule unfolding.

Appendix B: Formulation of Macroscopic Membrane
Stress-Strain Relationship

U*, the strain energy density function, is defined to be a func-
tion of F, the membrane deformation gradient and the number of
effective rigid links along the chain, N,

U* = U*�F,N� �B1�

Following the approach taken by Holzapfel �28�, Qi and Boyce
�20,29�, from the Second Law of Thermodynamics, the Clausius-
Planck inequality for an isothermal process is written as

To · Ḟ − U̇* � 0 �B2�

where, To is the first Piola Kirchhoff stress.
Following �B1�, the derivative of the strain energy density func-

tion gives

U̇* =
�U*

�F
· Ḟ +

�U*

�N
Ṅ �B3�

Using �B3� and rearranging �B2�,

	To −
�U*

�F

 · Ḟ −

�U*

�N
Ṅ � 0 �B4�

For an arbitrary deformation,

To =
�U*

�F
, �B5�

and

−
�U*

�N
Ṅ � 0 �B6�

For an incompressible material, Eq. �B5� gives the first Piola
Kirchhoff stress and the Cauchy stress is then found to be

T =
�U*

�F
FT − pI

Inequality �B6� shows that unfolding a domain is a dissipative
process.

References
�1� Rief, M., Gautel, M., Oesterhelt, F., Fernandez, J. M., and Gaub, H. E., 1997,

“Reversible Unfolding of Individual Titin Immunoglobulin Domains by
AFM,” Science, 276, pp. 1109–1112.

�2� Oberhauser, A. F., Marszalek, P. E., Erickson, H. P., and Fernandez, J. M.,
1998, “The Molecular Elasticity of the Extracellular Matrix Protein Tenascin,”
Nature �London�, 393, pp. 181–185.

�3� Fisher, T. E., Oberhauser, A. F., Carrion-Vazquez, M., Marszalek, P. E., and
Fernandez, J. M., 1999, “The Study of Protein Mechanics With the Atomic
Force Microscope,” TIBS, 24, pp. 379–384.

�4� Rief, M., Pascual, J., Saraste, M., and Gaub, H. E., 1999, “Single Molecule
Force Spectroscopy of Spectrin Repeats: Low Unfolding Forces in Helix
Bundles,” J. Mol. Biol., 286, pp. 553–561.

�5� Law, R., Carl, P., Harper, S., Dalhaimer, P., Speicher, D., and Discher, D. E.,
2003, “Cooperativity in Forced Unfolding of Tandem Spectrin Repeats,” Bio-
phys. J., 84, pp. 533–544.

�6� Arslan, M., and Boyce, M. C., 2005, “Constitutive Modeling of the Finite
Deformation Behavior of Membranes Possessing a Triangulated Network Mi-
crostructure,” J. Appl. Mech., 73, pp. 536–543.

�7� Eyring, H., 1936, “Viscosity, Plasticity and Diffusion as Examples of Absolute
Reaction Rates,” J. Chem. Phys., 4, pp. 283–291.

�8� Evans, E. A., 1973, “A New Material Concept for the Red Cell Membrane,”
Biophys. J., 13, pp. 926–940.

�9� Skalak, R., Tozeren, A., Zarda, R. P., and Chien, S., 1973, “Strain Energy
Function of Red Blood Cell Membranes,” Biophys. J., 13, pp. 245–264.

�10� Dao, M., Lim, C. T., and Suresh, S., 2003, “Mechanics of the Human Red
Blood Cell Deformed by Optical Tweezers,” J. Mech. Phys. Solids, 51, pp.
2259–2280.

�11� Mills, J. P., Qie, L., Dao, M., Lim, C. T., and Suresh, S., 2004, “Nonlinear
Elastic and Viscoelastic Deformation of the Human Red Blood Cell With
Optical Tweezers,” Mech. Chem. Biosyst., 1, pp. 169–180.

�12� Flory, P. J., 1953, Principles of Polymer Chemistry, Cornell University Press,
Ithaca, NY.

�13� Treloar, L. R. G., 1958, The Physics of Rubber Elasticity, Clarendon, Oxford.
�14� Boyce, M. C., and Arruda, E. M., 2000, “Constitutive Models of Rubber

Elasticity: A Review,” Rubber Chem. Technol., 73, pp. 504–523.
�15� Bischoff, J. E., Arruda, E. M., and Grosh, K., 2002, “Orthotropic Hyperelas-

ticity in Terms of an Arbitrary Molecular Chain Model,” J. Appl. Mech., 69,
pp. 198–201.

�16� Bischoff, J. E., Arruda, E. M., and Grosh, K., 2002, “A Microstructurally
Based Orthotropic Hyperelastic Constitutive Law,” J. Appl. Mech., 69, pp.
570–579.

�17� Bergstrom, J., and Boyce, M. C., 2001, “Deformation of Elastomeric Net-
works: Relation Between Molecular Level Deformation and Classical Statisti-
cal Mechanics Models of Rubber Elasticity,” Macromolecules, 34�3�, pp.
614–626.

�18� Holzapfel, G. A., 2002, “Structural and Numerical Models for the �Visco�elas-
tic Response of Arterial Walls With Residual Stresses,” Biomechanics of Soft
Tissue in Cardiovascular Systems �CISM Courses and Lectures, International
Centre for Mechanical Sciences�, G. A. Holzapfel and R. W. Ogden, eds.,
Springer-Verlag, Wien.

�19� Qi, H. J., Ortiz, C., and Boyce, M. C., 2005, “Protein Forced Unfolding and its
Effect on the Finite Deformation Stress-Strain Behavior of Biomacromolecular
Solids,” Mater. Res. Soc. Symp. Proc., 874, pp. L.4.3.1–L.4.3.6.

�20� Qi, H. J., Ortiz, C., and Boyce, M. C., 2006, “Constitutive Model for the
Stress-Strain Behavior of Biomacromolecular Networks Containing Folded
Domains,” ASME J. Eng. Mater. Technol., 128, pp. 509–518.

�21� Arslan, M., Boyce, M. C., Qi, H. J., and Ortiz, C., 2005, “Constitutive Mod-
eling of the Stress-Stretch Behavior of Biological Membranes Containing
Folded Domains,” Mater. Res. Soc. Symp. Proc., 898, pp. L14-05.

�22� Kuhl, E., Garikipati, K., Arruda, E. M., and Grosh, K., 2005, “Remodeling of
Biological Tissue: Mechanically Induced Reorientation of a Transversely Iso-
tropic Chain Network,” J. Mech. Phys. Solids, 53�7�, pp. 1552–1573.

�23� Bausch, A. R., and Kroy, K., 2006, “A Bottom-Up Approach to Cell Mechan-
ics,” Nat. Phys., 2, pp. 231–238.

�24� Liu, S., Derick, L. H., and Palek, J., 1987, “Visualization of the Hexagonal
Lattice in the Erythrocyte Membrane Skeleton,” J. Cell Biol., 104, pp. 527–
536.

�25� Byers, T. J., and Branton, D., 1985, “Visualization of the Protein Associations
in the Erythrocyte Membrane Skeleton,” Proc. Natl. Acad. Sci. U.S.A., 82, pp.
6153–6157.

�26� Rief, M., Fernandez, J. M., and Gaub, H. E., 1998, “Elastically Coupled Two-
Level Systems as a Model for Biopolymer Extensibility,” Phys. Rev. Lett., 81,
pp. 4764–4767.

�27� Bell, G. I., 1978, “Models for the Specific Adhesion of Cells to Cells,” Sci-
ence, 200, pp. 618–627.

�28� Holzapfel, G. A., 2000, Nonlinear Solid Mechanics: A Continuum Approach
for Engineering, Wiley, New York.

�29� Qi, H. J., and Boyce, M. C., 2004, “Constitutive Model for Stretch-Induced
Softening of the Stress-Stretch Behavior of Elastomeric Materials,” J. Mech.
Phys. Solids, 52, pp. 2187–2205.

�30� Taylor, G. I., 1938, “Plastic Strain in Metals,” J. Inst. Met., 62, pp. 307–324.

Journal of Applied Mechanics JANUARY 2008, Vol. 75 / 011020-7

Downloaded 04 May 2010 to 171.66.16.43. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



Bryan Eisenhower
Student

Department of Mechanical and Environmental
Engineering,

University of California,
Santa Barbara, CA

Gregory Hagen
Senior Researcher

Andrzej Banaszuk

United Technologies Research Center,
411 Silver Lane,

East Hartford, CT 06108

Igor Mezić
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Passive Control of Limit Cycle
Oscillations in a Thermoacoustic
System Using Asymmetry
In this paper we investigate oscillations of a dynamical system containing passive dy-
namics driven by a positive feedback and how spatial characteristics (i.e., symmetry)
affect the amplitude and stability of its nominal limit cycling response. The physical
motivation of this problem is thermoacoustic dynamics in a gas turbine combustor. The
spatial domain is periodic (passive annular acoustics) which are driven by heat released
from a combustion process, and with sufficient driving through this nonlinear feedback a
limit cycle is produced which is exhibited by a traveling acoustic wave around this
annulus. We show that this response can be controlled passively by spatial perturbation
in the symmetry of acoustic parameters. We find the critical parameter values that affect
this oscillation, study the bifurcation properties, and subsequently use harmonic balance
and temporal averaging to characterize periodic solutions and their stability. In all of
these cases, we carry a parameter associated with the spatial symmetry of the acoustics
and investigate how this symmetry affects the system response. The contribution of this
paper is a unique analysis of a particular physical phenomena, as well as illustrating the
equivalence of different nonlinear analysis tools for this analysis.
�DOI: 10.1115/1.2745399�

1 Introduction
Thermoacoustic instabilities in gas turbines develop when

acoustics in a combustor couple with an unsteady heat-release in a
positive feedback loop. Thermoacoustic modeling and control is
well-studied for axially extended combustion chambers, as in
�1–4�, where the acoustic to heat-release coupling is dominated by
longitudinal acoustic modes. Because different instability regimes
occur at different operating conditions, recent attention has fo-
cused on thermoacoustic modeling in combustion chambers with
annular, or cylindrical geometries �5–9�.

Control of thermoacoustic oscillations is a rich field due to the
complexity of the dynamics as well as the prominence of both
land and air-based jet engines. These high-energy devices operate
in a wide range of operating conditions, all of which are highly
nonlinear due to turbulence, combustion, and other extreme con-
ditions. The oscillations lead to compromised performance, high
noise levels, or catastrophic engine damage. Current control
means �see �10�� include avoiding operating conditions which ex-
hibit large oscillations, and introduction of additional dissipation
including acoustic dampers or resonators �11�, or in some cases
active feedback control �12–14�. The first option is detrimental in
terms of marketing/engine use while redesign using dampers and
resonators takes time and adds weight. Active control is challeng-
ing due to actuator limitations including harsh conditions, high
temporal frequencies, and the limited amount of control authority
a finite number of actuators offers.

With these limitations in mind, any approach that opens the
operating envelope, and does not add weight or significant com-
plexity and redesign is a valuable solution. In this paper we study
such a solution; introducing precise spatial variations �asymmetry�
in a specific mean property of the dynamics which directly affects
the amplitude of limit cycle oscillations.

Approaches to analyze thermoacoustic oscillations are abun-
dant, ranging from complex CFD simulation to reduced order

analysis. The reduced order analysis often includes spatial ap-
proximation of the first principle dynamics resulting in a system
of ordinary differential equations. This spatial approximation can
be performed many ways including an elementwise approach or
by a modal decomposition. If a modal approach is used, the model
is often of very low order �since the thermoacoustic instability is
typically tied predominantly to one or two acoustic modes� while
if the element approach is used, the ODE system will result in
numerous coupled oscillators. We mention this here because al-
though our approximation in this study is modal, resulting in two
coupled modes �oscillators�, the tools used here align with those
used in to study synchronized aspects of multiple coupled
oscillators.

The organization of this paper is as follows: we begin by de-
veloping a reduced model of the dynamics starting with first prin-
ciples. The equilibrium of this model is then investigated using
numerical bifurcation analysis tools. Following this, the periodic
equilibria are determined using two methods, averaging, and har-
monic balance. The results of these two methods are compared
and the limit cycle properties are investigated using both ap-
proaches illustrating that altering the symmetry in a specific pa-
rameter always reduces the limit cycle amplitude and eventually
stabilizes the system. It is also shown that the oscillations during
this imposed asymmetry remain stable.

2 Modeling
In this section we briefly describe the thermoacoustic model

used in the current analysis. In an annular combustion system,
flow passes down the length of an annulus, and is eventually
mixed with fuel. When this mixture reaches a series of flames
distributed around this annulus, it reacts/combusts. This combus-
tion process both reacts to the acoustics �i.e., how the acoustics
bring the fuel mixture to the flame�, while at the same time it
drives the acoustics with its heat release. Figure 1 presents a sche-
matic of the annular combustor and feedback interconnection be-
tween the acoustics and heat release.

The fundamental structure and justification of all assumptions
of the transport equations for this system is available in the works
of Culick �e.g. �15��. The transport equations are
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��

�t
+ � · �u�� = 0 �1�

�
�u

�t
+ �u · �u = − �p �2�

�
�e

�t
+ �u · �e = − p �· u + q �3�

where �, u, and e are density, velocity, and internal energy per unit
volume, p, and q are pressure and a volumetric heat release
contribution and the spatial Laplacians describe cylindrical
coordinates.

Using a series of assumptions relating to the boundary condi-
tions which can be found in �19� results in a pair of partial differ-
ential equations on the annular domain,

�u�

�t
= − a2 �p

��
�4�

�p

�t
+

�u�

��
= − �p + q �5�

where � is the spatial rotational coordinate, � is a damping con-
stant, a is the acoustic wavespeed, and q is a driving heat release
mechanism.

2.1 Heat Release. Equations �4� and �5� are self-contained
with the exception of the heat release function. The form of the
heat release function �q� is the driving component in the feedback
loop. Because of the complexity of combustion dynamics, harsh
conditions, high noise levels, and lack of adequate sensing appa-
ratus, an analytical form is not yet available. The heat released
from combustion is most frequently modeled as a function of
acoustic velocity that contains a saturation-like quality as in
�1,3,16–18�. With this in mind we denote the heat release contri-
bution as

q = ��u� + ��u3� �6�

where � is a linear destabilizing effect, and � is a parameter that
introduces the limiting effect ���0 is chosen�.

2.2 Asymmetry Parameter. Prior to discretizing the equa-
tions into a modal representation, the acoustic wavespeed is pa-
rameterized to have a spatial preference. A perturbation is added
to the wavespeed in the form of the second spatial harmonic. The
reason for this choice is that using linear analysis in a previous
study �19�, it was found that altering the wavespeed in this pattern
effected the stability the most. The resulting spatially perturbed
acoustic wavespeed is

a = a0 + �2� cos�2�� �7�

where a0 is a nominal wavespeed and � is the asymmetry param-
eter with second harmonic preference.

2.3 Discretization. The discretized equations are obtained by
projecting the rotational coordinate onto spatial Fourier modes.
The first two spatial modes are retained: sin��� , cos���. A spatio-
temporal response in these coordinates is

p��,t� =
1

��
�psin�t�sin��� + pcos�t�cos���� �8�

u��,t� =
1

��
�usin�t�sin��� + ucos�t�cos���� �9�

where psin , pcos and usin , ucos are the time dependent modal am-
plitudes which become the states of our dynamical system. A
schematic of these modes on the annular domain is presented in
Fig. 2.

The relative amplitude and phase of the temporal coefficients
impact the presence of either standing or traveling waves. A stand-
ing wave is characterized with an amplitude that depends on po-
sition �i.e., a response that has clear nodes and antinodes�, while a
traveling wave retains a constant amplitude with space. These
wave motions have reciprocal relations in that traveling waves can
be described using combination of standing waves and vice versa
�20�. We are particularly interested in traveling wave solutions and
keep in mind that using sin��� and cos��� as a basis for the
dynamics, a traveling wave exists when the amplitudes of the
temporal coefficients are equal with a phase difference of � /2
�and solutions that are trigonometrically symmetric to this�.

When using the first two Fourier modes as a basis, the cubic
nonlinearity acts through the velocity component and is projected
onto the modes as follows:

Fig. 1 Schematic of the annular domain with the first pair of
Fourier modes

Fig. 2 Schematic representation of the spectral modes of the
annular combustor
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qsin =
�

��
�

0

2�

sin����usin�t�sin��� + ucos�t�cos����3d�

= ��3��

4
usin�usin

2 + ucos
2 �� �10�

qcos =
�

��
�

0

2�

cos����usin�t�sin��� + ucos�t�cos����3d�

= ��3��

4
ucos�usin

2 + ucos
2 �� �11�

and projecting the assumed modal solution onto �4� and �5� results
in the system of ODEs,

	
u̇sin

u̇cos

ṗsin

ṗcos


 = 	
0 0 0 a0

2 − �

0 0 − a0
2 − �

� 1 − � 0

− 1 � 0 − �

	

usin

ucos

psin

pcos



+ 	

0

0

��3��

4
usin�usin

2 + ucos
2 ��

��3��

4
ucos�usin

2 + ucos
2 �� 


To get these equations in the form coupled oscillators, we take
�usin ,ucos� as �x1 ,x2� which results in the following second order
coupled nonlinear differential equations:

x1� + �x1� + �a0
2 − ��x1 = x2�a0

2 − ���� − ��3��

4
�x1

2 + x2
2���

�12�

x2� + �x2� + �a0
2 + ��x2 = − x1�a0

2 + ���� + ��3��

4
�x1

2 + x2
2���

�13�
From this representation, the architecture of the system be-

comes clear. Once projected onto the two modes, the dynamics are
two stable oscillators with skew symmetric coupling due to the
heat release.

For the remainder of this study, we will investigate the behavior
of systems �12� and �13� specifically focusing on two parameters;
� which is the skew symmetric coupling parameter from heat
release, and � which is the asymmetry parameter. We begin by
studying behavior of the global equilibrium and continue by in-
vestigating the periodic equilibria and their stability. For the
analysis to follow, we will use the values in Table 1 as a set of
nominal parameters.

3 Equilibrium Analysis
The systems �12� and �13� contain one equilibrium point at the

origin, and in this section we investigate the stability of this equi-
librium with respect to both the linear coupling parameter, and the
asymmetry parameter. When the asymmetry parameter ��� and

coupling term ��� are zero, evaluation of the Jacobian at the origin
reveals a set of co-located stable eigenvalue pairs at
1
2 �−�	�−4a0

2+
0
2�.

When the coupling is increased from zero these complex eigen-
values become

�1,2 =
− � − ��2 − 4a0

2 	 4�− �2a0
4

2

�3,4 =
− � + ��2 − 4a0

2 	 4�− �2a0
4

2
�14�

It is evident that with sufficiently large values of positive or nega-
tive coupling the eigenvalues break apart, moving left and right in
the complex plane. Physically, the case with �=0 represents zero
combustion �the eigenvalues are purely acoustic�, and the case
with nonzero � portrays the case with the driving combustion
process. With sufficient heat addition, one pair of complex eigen-
values eventually crosses the imaginary axis. The value of the
coupling parameter such that the eigenvalues cross the imaginary
axis is,

�crit =
�

a0
�15�

From this we see that instability occurs when the coupling from
positive feedback exceeds the acoustic damping normalized by the
nominal wavespeed. When the coupling from heat release is fur-
ther increased the eigenvalues continue to become more unstable,
the oscillations grow, and are eventually limited by nonlinearity.
Figure 3 shows results from the numerical bifurcation analysis
tool AUTO illustrating the Hopf bifurcation leading to instability
without any modification of symmetry �the system parameter is
oscillation amplitude�.

The stabilizing effect of adding asymmetry to the combustion
dynamics is performed by investigating the behavior of the system
under variations of the asymmetry parameter �. Taking a nonzero
positive value for � which insures oscillations in the dynamics,
we perform eigenvalue analysis in a similar way. The results show
that increasing asymmetry provides a stabilizing mechanism, and
the critical value that returns the eigenvalues to the stable half of
the complex plane is

�crit
2 =

a0
�a0

2�2 − �2

�1 + �2
�16�

Table 1 Nominal parameters

a0 � � � �

1.0 0.2 0.5 −0.0018 0.0

Fig. 3 Bifurcation solutions representing the destabilizing ef-
fect of the parameter �
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Similar numerical bifurcation results of the system with its
symmetry altered showing its stabilizing effect are found in Fig. 4.

The focus of this study is to generate both analytical and nu-
merical results which are similar to the schematics of Figs. 3 and
4. Specifically, we investigate the amplitude and stability of the
limit cycle when ���crit and 0����crit.

4 Periodic Solutions
To analyze the bifurcation branches and periodic behavior of

the combustion system, we rely on the characteristic that the dy-
namics are nearly linear. The linearity of the system is addressed
by rearranging the terms of the nonlinear systems �12� and �13�
into a standard oscillator form and entering in the nominal param-
eters. The equations become

x1� + x1 = − 0.2x1� + �x1 + 0.5�− � + 1�x2 + 0.0024�� − 1�x1
2x2

+ 0.0024�� − 1�x2
3

x2� + x2 = − 0.2x2� − �x2 + 0.5�− � − 1�x1 + 0.0024�� + 1�x1x2
2

+ 0.0024�� + 1�x1
3 �17�

With small variation in the asymmetry parameter � the system
remains closely linear in its behavior. This is also confirmed by
the mostly sinusoidal response of equations from time integration
�i.e., simulation with an ODE solver�. Another point of interest
which is evident in �17� is that the terms on the right-hand side
consist of driving from heat addition and dissipation from damp-
ing in the acoustics. It is a balance of these two mechanisms that
is the manifestation of the periodic response of the system.

Since the dynamics of the system appear to first order as those
of a linear oscillator with small perturbation, we have a few op-
tions for the approximate analysis of the dynamics. Below we
present two approaches relying on averaging �in two different
coordinate systems�, and harmonic balance to obtain the slow flow
dynamics of the trajectories.

4.1 Averaging. The first approach to obtain the slow flow of
Eqs. �12� and �13� includes the use of time averaging �see �21��.
We perform this approximation using two different bases; polar
coordinates, and using action angle variables. We show that the
averaged results are identical using either approach.

The averaging approach includes making a harmonic assump-
tion of the limit cycle response exploiting a time scale assumption
on the assumed solution �i.e., variation of parameters�, and inte-
gration in time �averaging�. What results is the slow flow �i.e.,

amplitude and phase ODEs�. We will investigate the equilibria of
this reduced system both with and without asymmetry.

4.1.1 Averaging in Polar Coordinates. We begin by making
the assumption that the response is harmonic with slowly varying
amplitude and phase parameters,

xi�t� = Ri�t�cos�
t + �i�t�� �18�

where i relates to the two oscillators describing the amplitudes of
the sine and cosine acoustic modes. For this study, we are con-
cerned with solutions where the period of each oscillation is equal
and stationary. Differentiation in time results in

x��t� = − 
Ri�t�sin�
t + �i�t�� − �i��t�Ri�t�sin�
t + �i�t��

+ Ri��t�cos�
t + �i�t�� �19�

where �.�� represents differentiation with respect to time. The as-
sumption that the amplitude and phase of the assumed solution
vary slowly with time reveals that their time derivative has negli-
gible contribution to the velocity states which is equivalent to
solution of the ODE using variation of parameters �22�. With this
in mind, we assume

0 = − �i��t�Ri�t�sin�
t + �i�t�� + Ri��t�cos�
t + �i�t�� �20�

which results in the velocity state as

x��t� = − 
Ri�t�sin�
t + �i�t�� �21�
The assumed solutions �18� and �21�, and the time derivative of

�21� are substituted into the equations of motion. Using this equa-
tion and �20� results in two equations and two unknowns for each
oscillator. Isolating the time derivatives of the unknowns
�Ri��t� ,�i��t�� results in an ODE describing the slow evolution of
the amplitude and phase of the limit cycle. This differential equa-
tion system will contain the parameters of the system
�� ,� ,a0 ,
0�, the states of the slow flow �Ri�t� ,�i�t��, and reso-
nant terms �i.e., cos�
t�, sin�
t��. The next step is to remove the
resonant terms by averaging over one period of oscillation. Before
doing this we change the coordinates to consider relative phase
variables

�+ = 1
2 ��1 + �2�

�− = �1 − �2

or

�1 =
�−

2
+ �+

�2 = �+ −
�−

2
�22�

and perform the averaging

dR̄i

dt
=

1

T�0

T

f�R,�,t�dt �23�

d�̄i

dt
=

1

T�0

T

f�R,�,t�dt �24�

where T=2� /
, and the function f�R ,� , t� contains information
from both oscillators due to the coupling, and the overbar denotes
averaged quantities. The resulting system is

Fig. 4 Bifurcation solutions representing the stabilizing effect
of the parameter �
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�̄+� =
cos��̄−��16� + 9����R̄1

2 + R̄2
2����R̄1 − R̄2��R̄1 + R̄2�a0

2 + ��R̄1
2 + R̄2

2��

64a0R̄1R̄2

�̄−� = −
32�R̄1R̄2 + cos��̄−���a0

2 + ��R̄1
2 + �a0

2 − ��R̄2
2��16� + 9����R̄1

2 + R̄2
2��

32a0R̄1R̄2

R̄1� = −
16�a0R̄1 + sin��̄−��a0

2 − ��R̄2�16� + 3����R̄1
2 + 3R̄2

2��
32a0

R̄2� = −
16�a0R̄2 + sin��̄−��a0

2 + ��R̄1�16� + 3����3R̄1
2 + R̄2

2��
32a0

�25�

Studying the equilibrium points of �25� reveals the amplitude
and phase of the limit cycle when the limit cycle in the system
exists due to sufficient heat release �i.e., ���crit�. We will study
these equilibria and how they are effected by assymmetry in Sec.
5.

4.1.2 Averaging in Action Angle Coordinates. To perform the
averaging in action angle coordinates, we first define the canonical
transformation,

x1�t� = �2J1�t�cos��1�t��

x1�t�� = �2J1�t�sin��1�t�� �26�

x2�t� = �2J2�t�cos��2�t��

x2�t�� = �2J2�t�sin��2�t�� �27�
where again as designated, the action and angle variables are
functions of time. The second derivative in time is found from
differentiation of the above relations �i.e., x1�=d�x1�� /dt� and after
substituting the coordinate transforms, we have two equations and
four differential variables �J1 ,J2 ,�1 ,�2�. Two additional equations

are realized by the constraint equations �again from variation of
parameters�:

dx1

dt
= x1�

dx2

dt
= x2� �28�

for the assumed quantities in �26� and �27�.
After these substitutions, we can solve for the differential vari-

ables of the system �J1� ,J2� ,�1� ,�2�� resulting in a fourth order ordi-
nary differential equation system. Again, we transform the phase
variables to the form in Eq. �22� resulting in a differential equa-
tion system �J1� ,J2� ,�+� ,�−��. In this coordinate system, the phase
variable �+ acts like time and hence we average the dynamics
over this variable,

f̄ =
1

2�
�

0

2�

fd�+ �29�

The averaged system in action angle coordinates is then

�̄+� = −
16�J̄1

�J̄2�a0
2 + 1� + cos��̄−��8� + 9����J̄1 + J̄2����J̄1 − J̄2�a0

2 + ��J̄1 + J̄2��

32�J̄1
�J̄2

�̄−� = � +
cos��̄−��8� + 9����J̄1 + J̄2����J̄1 + J̄2�a0

2 + ��J̄1 − J̄2��

16�J̄1
�J̄2

J̄1� =
1

8
�J̄1�sin��̄−��a0

2 − ���J̄2�8� + 3����J̄1 + 3J̄2�� − 8��J̄1�

J̄2� =
1

8
�J̄2�sin��̄−��a0

2 + ���J̄1�8� + 3����3J̄1 + J̄2�� − 8��J̄2� �30�

4.2 Harmonic Balance. The variable coefficient harmonic
balance method provides another approximation to the limit
cycle dynamics and to develop it we begin with the assumed
harmonic solution �18�, differentiate it as necessary, and insert it
into the equations of motion �12� and �13�. Similar to the use of
variation of parameters, the coefficients of the assumed harmonic
solution are considered slowly varying. Because of this, as in �23�,

the second order derivatives of the amplitude and phase coeffi-
cients of the assumed solution are considered negligible. By
collecting the sine and cosine terms of each equation �the
coefficients of the resonant terms� we obtain two differential equa-
tions for each oscillator. Similar to the slow flow system derived
from averaging this ODE describes the slow evolution of ampli-
tude and phase of the assumed solution. We may again solve for
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the time derivatives of the unknown coefficients, and the equilib-
riums will describe the limit cycle conditions.

If we consider the resonant case, the period of oscillation
will be related to the wavespeed and therefore the natural

frequency of the assumed solution will equal the wave speed �

=a0�. After including this into the equations of motion, we have
the slow flow system:

R1� =
3����3k2� + 2k1a0��a0

2 − ��R2R1
2 + 16��� − 2a0

2�R1 + �k2� + 2k1a0��a0
2 − ��R2�9���R2

2 + 16��
16��2 + 4a0

2�

R2� = −
− 3����2k1a0 − 3k2���a0

2 + ��R1R2
2 + 16��2a0

2 + ��R2 − �2k1a0 − k2���a0
2 + ��R1�9���R1

2 + 16��
16��2 + 4a0

2�

�−� =
9����k1� + 2k2a0��a0

2 + ��R1
4 + 2�3����6k2a0

3 + k1���R2
2 + 8��k1� + 2k2a0��a0

2 + ���R1
2

16��2 + 4a0
2�R1R2

+ ¯

+
64�a0R2R1 + �2k2a0 − k1���a0

2 − ��R2
2�9���R2

2 + 16��
16��2 + 4a0

2�R1R2

�+� =
− 9����k1� + 2k2a0��a0

2 + ��R1
4 − 2�3���a0�6k2� + k1�a0�R2

2 + 8��k1� + 2k2a0��a0
2 + ���R1

2

32��2 + 4a0
2�R1R2

+ ¯

+
32�2a0R2R1 + �2k2a0 − k1���a0

2 − ��R2
2�9���R2

2 + 16��
32��2 + 4a0

2�R1R2

�31�

where k1=sin �− and k2=cos �−.

5 Comparison of Methods and Numerical Results
In this section we compare the results of the different approxi-

mation methods. We first present the dynamics when the asymme-
try parameter is set to zero �the value of the equilibria, and the
associated phase space of the reduced system�. A comparison is
also presented for the amplitudes of the limit cycle with varying
asymmetry. It is shown that the three different approximations to
the full nonlinear system are in agreement with each other and
that the asymmetry parameter always reduces the amplitude of the
limit cycle.

5.1 Reduced Phase Space Comparison. When the asymme-
try parameter is set to zero the dynamics are symmetric and there-
fore the amplitude of the two acoustic modes are identical. This
offers a means to investigate the system on a two-dimensional
plane.

For the case with averaging in polar coordinates, we let R̄1

= R̄2= R̄ and �=0 in Eq. �25� and obtain the reduced system,

�̄+� = 0

�̄−� = − 1
16 cos��̄−��18���R̄2 + 16��a0

R̄ = −
R̄�12���R̄2 + 16��sin��̄−�a0

2 + 16�R̄a0

32a0
�32�

The equilibrium points of �32� are found by setting time deriva-
tives to zero. The nontrivial real solutions are presented in Table
2, with the numerical substitution using the nominal parameters.

In the approximation using averaging in action angle coordi-
nates we investigate the nominal symmetric case by letting J1

=J2= J̄, �=0 in the differential equation system �30�. The resulting
equations are

�̄+� = 1
2 �− a0

2 − 1�

�̄−� = 1
8 cos��̄−��8� + 18���J̄�a0

2

J̄ = 1
8
�J̄��J̄�8� + 12���J̄�sin��̄−�a0

2 − 8��J̄� �33�

The equilibrium points of �33� are presented in Table 2. Note
that the conversion of R��2J provides exact agreement in these
results between averaging in polar and action angle coordinates
�and the harmonic balance for that matter�.

For the case where harmonic balance is utilized as an approxi-
mation, we investigate the symmetric case by letting R1=R2=R
and �=0 resulting in

R��t� =
Ra0

2��9���R2 + 8��cos��−�� − 16� + 4�3���R2 + 4��sin��−�a0�
8��2 + 4a0

2�

R��t� =
Ra0

2�4�3���R2 + 4��sin��−�a0 − ���9���R2 + 8��cos��−� + 16��
8��2 + 4a0

2�

011021-6 / Vol. 75, JANUARY 2008 Transactions of the ASME

Downloaded 04 May 2010 to 171.66.16.43. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



�−� =
�9���R2 + 8��cos��−�a0

3

2��2 + 4a0
2�

�+� =
�a0�4� − �3���R2 + 4��sin��−�a0�

4��2 + 4a0
2�

�34�

In this system, the term �+ is a decoupled nonequilibrium state
that acts similar to time. Therefore we omit this differential equa-
tion and perform the steady state analysis. The nontrivial real
equilibria of the symmetric system are presented in Table 2.

As seen in Table 2 there is agreement between all three approxi-
mate methods. Additionally, since the system has been reduced to
a second order system, we can investigate its phase space graphi-
cally. The phase space of the averaged system �32� is presented in
Fig. 5 �the phase space for all three methods is indistinguishable
graphically, so for brevity we present the vector field from aver-
aging in polar coordinates�. From this, we find that the equilib-

rium point R̄=11.19, �̄−=−�� /2� is stable �square�, while the
other equilibria are unstable �star�, which was confirmed by evalu-
ation of the Jacobian at these equilibria.

5.2 Amplitude Comparisons. Now that we are familiar with
the approximate systems when the asymmetry parameter is zero,
we investigate the response of the limit cycle amplitude when the
symmetry of the acoustic wavespeed is modified on the annular
domain. In this section we provide a comparison of oscillator
amplitudes �12� and �13� using three different methods including
averaging in polar and action angle coordinates, as well as the
harmonic balance with nonzero asymmetry. In each case, fixed
points of the ordinary differential equations were found by time
integration of the system of equations, retaining the final point

when the dynamics have settled. In all cases, the nominal system
parameters are those described in Sec. 2, while the symmetry
parameter is varied as the independent variable. Figure 6 illus-
trates the amplitude of the limit cycle for each acoustic mode
�each oscillator in �12� and �13��.

In this figure, the influence of the asymmetry parameter ���
presents an attenuating influence on the amplitudes of the oscilla-
tions ultimately quenching the response. In addition, we notice
that these amplitudes decrease at different rates which occurs be-
cause when altering the symmetry of the system, the dynamics
prefer one spatial mode over the other, and the corresponding state
variable behaves accordingly. It is also clear that the solutions
agree quite well between the original and approximate dynamics.

The above plots trace the stable solutions of the system in both
its full and approximate state. We are also interested in the effect
of asymmetry on the unstable solutions. In Fig. 7 we trace both
the stable and unstable branches as the asymmetry is increased.
For this we simply use a gradient search on the right-hand sides of
the approximate differential equations �seeking zero�.

This figure shows that when �=0 and R1=R2 there exists two
values �11.19,17.10� corresponding to the stable and unstable
equilibria. With an increase in � the stable solution begins to
decrease in amplitude �R1 and R2 at different rates� and eventually
reaches zero. For the unstable solution which starts at 17.10 in-
creasing � also effects the amplitudes �at different rates� but it is
evident that these solutions do not interact with the stable branch.

5.3 Orbit Stability. As we have shown, symmetry effects
amplitudes while to be sufficiently applicable for engineering ap-
plication, these new orbits must be stable to account for unmod-
eled characteristics or external influences. Therefore, it is neces-
sary to assess the stability of the periodic solutions of this system
under influence of the asymmetry to characterize the robustness of
the use symmetry in the system to reduce oscillation amplitudes.
To perform this analysis, the slow flow equations developed from
the averaging method in action angle coordinates �30� are linear-
ized about the stable equilibria in Fig. 7. The eigenvalues of these
fixed points is presented in Fig. 8.

Figure 8 illustrates that the orbits remain stable under all con-
ditions where the slow flow equations are valid. The behavior of
these dynamics are such that all solutions are stable and real when
the symmetry parameter is set to zero. Upon increasing this pa-
rameter, two eigenvalues break apart and become complex pairs.
Clearly these eigenvalues are associated with the amplitude evo-
lution dynamics �as verified by investigating the eigenvectors�,

Table 2 Equilibria for the symmetric case comparing different
methods „when the conversion RÉ�2J is used, all values
agree…

Averaging
�polar�

Averaging
�action-angle�

Harmonic
balance

Amplitude
R̄=

2�	�−�a0

�1/4�3�a0
J̄= 	

2����a0
2�

3���a0
2

R=
2�	�−�a0

�1/4�3�a0

��17.10, 11.19
 ��62.68,146.27
 ��17.10,11.19


Phase �̄−= 	
�
2 , 	

�
2 �̄−= 	

�
2 , 	

�
2

�−= 	
�
2 , 	

�
2

Fig. 5 Phase space of the nominally symmetric system reduced to a 2D field
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while the third eigenvalue remains real and is associated with the
differential phase between the two oscillator dynamics. This par-
ticular eigenvalue approaches instability as the amplitude equilib-
rium approaches zero but remains stable.

6 Summary
In this paper we have modeled thermoacoustic dynamics in an

annular combustor and reduced these dynamics to a coupled os-
cillator system including a parameter for the spatial symmetry of
the passive dynamics. We have shown that the nonlinear coupling
due to heat release, always imposes an adverse effect on the sys-
tem, resulting in a limit cycle exhibited by a traveling acoustic
wave. We have also shown that spatial perturbation in the sym-
metry of the acoustic wavespeed reduces the amplitude of the
limit cycle �in a stable way� eventually stabilizing the system.
These results have been obtained using three different nonlinear
analysis tools that in this problem yield identical results.
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scaled…

Fig. 8 Eigenvalues of the periodic orbits with the influence of
asymmetry
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Fast Fourier Transform Based
Numerical Methods for
Elasto-Plastic Contacts of
Nominally Flat Surfaces
This paper presents a three-dimensional numerical elasto-plastic model for the contact of
nominally flat surfaces based on the periodic expandability of surface topography. This
model is built on two algorithms: the continuous convolution and Fourier transform
(CC-FT) and discrete convolution and fast Fourier transform (DC-FFT), modified with
duplicated padding. This model considers the effect of asperity interactions and gives a
detailed description of subsurface stress and strain fields caused by the contact of elasto-
plastic solids with rough surfaces. Formulas of the frequency response functions (FRF)
for elastic/plastic stresses and residual displacement are given in this paper. The model is
verified by comparing the numerical results to several analytical solutions. The model is
utilized to simulate the contacts involving a two-dimensional wavy surface and an engi-
neering rough surface in order to examine its capability of evaluating the elasto-plastic
contact behaviors of nominally flat surfaces. �DOI: 10.1115/1.2755158�

1 Introduction
Analyzing contact stress is of a significant importance to the

design of mechanical components. When two elements are
brought into contact and relative motion, interfacial normal and
shear tractions occur either due to either the direct interaction of
the asperities of two surfaces in a dry contact or the entrainment
of a pressurized fluid in a mixed lubrication process. The knowl-
edge of surface interaction makes the analysis of subsurface stress
analysis feasible. Moreover, the subsurface stress field could be
perturbed by surface irregularities and internal eigenstrains �such
as plastic strain�. The contact stress field information provides the
foundation for the investigation of many surface-related phenom-
ena, such as roll-contact fatigue �1�, crack propagation �2�, and
wear �3�.

Engineering surfaces are inevitably rough, and asperities may
deform plastically until the contact area becomes sufficiently large
and the elementary pressure can hold the applied load �4�. A pio-
neered work has been done by Greenwood and Williamson �5�,
who assumed that asperities have spherical tips with uniform ra-
dius but the Gaussian height distribution. This basic model was
extended by Chang et al. �6� to take into account the volume
conservation of the plastic zone. A thorough review of numerical
models and simulations of multiple asperity contacts has been
given by Bhushan �7�.

On the other hand, contact problems can be formulated by
means of the explicit relationship between excitation and material
response. Tripp et al. �8� developed analytical solutions for the
internal stress field induced by bisinusoidal normal and tangential
tractions. A complete solution for the elastic contact of one-
dimensional sinusoidal surface with a flat surface was investigated
by Westergaard �9� and Dundurs et al. �10�. Experimental results
reported in �11� showed the difficulty of predicting the shape of
contact areas for two-dimensional sinusoidal surfaces, and thus, a
numerical method, rather than an analytical approach, was em-
ployed to investigate the contact situation. Gao et al. �12� con-
ducted an extensive study on the plastic contact between a rigid,

flat body and an elastic–perfectly plastic solid with a one-
dimensional sinusoidal surface by using the finite element method
�FEM�. They identified two parameters characterizing the type of
the asperity contact behavior. Recently, Kim et al. �13� analyzed
both frictionless and frictional contacts of a rigid surface with an
elastic–perfectly plastic solid with a non-Gaussian rough surface
generated by computer based on different statistical parameters.

The accurate description of the real contact area requires fine
discretization with a large number of grids, which means a heavy
computational burden. In addition, the mesh size along the depth
should be small enough in order to obtain an accurate subsurface
stress field. Considering the fact that many linear convolutions
exist in several mathematical formulations of contact problems,
the fast Fourier transform �FFT� �2,14–18� technique is utilized to
accelerate the numerical process of contact simulation. Liu et al.
�16� proposed a DC-FFT method with twice domain extension in
each dimension to circumvent the otherwise encountered border
aliasing error. This method is widely used for the analysis of the
contact of counterformal rough surfaces, where the contact area is
small compared to the sizes of contact bodies. However, the con-
tact of two nominally flat surfaces involves a large nominal con-
tact area, and the grid number needed to discretize surface asperi-
ties is beyond the power of a regular personal computer. Because
a periodic similarity may exist in surface topography �4�, the con-
tact of nominally flat, but actually rough, surfaces may be solved
on a characteristic domain that can be periodically extended to the
entire contact region. Wang et al. �19� utilized the continuous
convolution and Fourier transform �CC-FT� method, based on the
frequency response function �FRF�, to investigate the asperity
contact in mixed lubrication, where the rough surface of a half-
space was assumed to be periodic. This method is extended here
to solve the elasto-plastic contact involving infinitely large rough
surfaces by means of periodic domain extension.

Extensive modeling work has been done to study elasto-plastic
counterformal contacts. Jacq et al. �20� developed a fast semi-
analytical method to study the elasticplastic response of solid ma-
terials. Furthermore, frictional heating was introduced by Boucly
et al. �21� into the model mentioned above. Wang and Keer �22�
investigated the effect of various strain-hardening laws on the
elasto-plastic indentation behaviors of materials.

The current work, based on Jacq’s model �20�, aims to develop
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a three-dimensional numerical elasto-plastic contact model for
nominally flat surfaces, employing the CC-FT approach or the
DC-FFT approach modified with duplicated padding. This model
utilizes the explicit formula for material response �the Green’s
function and the frequency response function� to calculate the
results of contact area, contact pressure, subsurface stress, and
plastic strain. The frequency response functions for elastic fields
caused by surface tractions and plastic strains are discussed in
detail in this paper. The present model does not make any assump-
tion on the asperity shape; it fully considers the interactions of
neighboring contact asperities and the bulk deformation. The nu-
merical results obtained from this model are compared to analyti-
cal solutions for verification. This model is also applied to evalu-
ate the elasto-plastic contacts involving a sinusoidal surface and
an engineering rough surface.

2 Theoretical Background

2.1 Contact Models. The general contact model with bound-
ary constraints used by many researchers is repeated here for clar-
ity

W =�
�c

p�x,y�d�

h�x,y� = hi�x,y� + u3
B1+B2�x,y� − � � 0

p�x,y� � 0 �1�

h�x,y�p�x,y� = 0

p�x,y� = 0 � �c, h�x,y� = 0 � �c

Here, W is the applied load, �c the real contact surface, p the
pressure, u3 the vertical displacement of two surfaces, and hi�x ,y�
and � are the initial gap and rigid-body approach, respectively.
The deformation can be related to loading through the Green’s
function. Therefore, the contact problem can be described by a
linear equation system subjected to the constraints of nontensile
contact pressure and impenetrable contact bodies, as indicated in
Eq. �1�. The iterative method based on the conjugate gradient
method �CGM� �23� is introduced to solve this linear equation
system for rough-surface contact problems efficiently, with which
contact pressure and contact area can be determined
simultaneously.

The elastic normal displacement caused by contact pressure
p�x ,y� is given by the Boussinesq formulas �24�

u3
p�x,y� =�

−�

� �
−�

�

Gp�x − x�,y − y��p�x�,y��dx�dy� = Gp � p

�2�

where Gp�x ,y�=1 /�E*�x2+y2 and E*=E /1−�2. The domain of
interest needs to be discretized into mesh elements, as indicated in
Fig. 1. The numerical evaluation uses the discrete influence coef-
ficient �IC�, Dj, instead of the continuous Green’s function. The
general form of ICs can be found in �24�, which is the integral of
the product of the shape function, Y�x�, and the Green’s function,
G�x�, over �−� /2,� /2�,

Dj =�
−�/2

�/2

G��j − ��Y���d� �3�

Then, the displacement ui can be expressed in the form of the
cyclic convolution,

ui = �
r=0

N−1

prDmod�i−r� of N i = 0, . . . ,N − 1 �4�

With the continuous convolution theorem, the application of the
Fourier transform on both sides of Eq. �2� should result in simple
multiplication of the Fourier transform of pressure and the fre-
quency response function �FRF�. FRFs of surface normal dis-
placements induced by pressure and shear tractions are listed in
�25�, as shown in

G5 p�m,n� =
2

E*�m2 + n2
; G5 s�m,n� = −

2im

	e�m2 + n2�
�5�

where the shear traction is applied along the positive x-axis, and m
and n are coordinates in the frequency domain. The formula
should be applied on both contact bodies to obtain the total sur-
face deformation. Displacements caused by plastic strain can be
directly included into the total displacement expression given in
Eq. �1� for a solution of elasto-plastic contact. In Secs. 2.2–2.4,
the frequency response functions of elastic/residual stresses and
displacements are discussed.

2.2 FRF of Stress Field in Half-Space. The FRFs of normal
surface displacement and subsurface elastic stress components
caused by the surface tractions, shown below in Eqs. �6a� and �6b�
have been derived based on the general expressions given by Liu
and Wang �17� for known pressure p�x ,y� and tangential traction
s�x ,y�

2	u53�m,n,z� = �2�1 − ��



+ z	e−
z · p5 + i�2� − 1


2 −
z



	me−
z · s5

�6a�

�5 11�m,n,z� = �m2�
z − 1� − 2�n2�
−2e−
z · p5 + i�2�1 + ��m
−1

− 2�m3
−3 − m3
−2z�e−
z · s5

�5 22�m,n,z� = �n2�
z − 1� − 2�m2�
−2e−
z · p5 + i�2�m
−1

− 2�mn2
−3 − mn2
−2z�e−
z · s5

Fig. 1 Contact problem description: „a… contact of nominally
flat surfaces, „b… periodic extension of a representative region,
„c… characteristic domain with a mesh in a 3D view, and „d…
characteristic domain of a contact surface with a mesh
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�5 33�m,n,z� = − �
z + 1�e−
z · p5

+ imze−
z · s5 �6b�

�5 12�m,n,z� = mn�
z − 1 + 2��
−2e−
z · p5

+ i�n
−1 − 2�nm2
−3 − nm2
−2z�e−
z · s5

�5 13�m,n,z� = imze−
z · p5 + �m2z
−1 − 1�e−
z · s5

�5 23�m,n,z� = inze−
z · p5 + mnz
−1e−
z · s5

Here, 
=�m2+n2, p5 and s5 are the double Fourier transforms of
surface tractions with respect to coordinates x and y. One quick
verification can be conducted through considering the surface dis-
placement caused by a unit concentrated tangential force on the
origin, i.e., s5=1, p5 =0 and z=0, the FRF of the normal displace-
ment in Eq. �6a� reduces to that for the Cerruti problem in Eq. �5�

u53�m,n,0� = im
2� − 1

2
2	
= −

2�1 + ���1 − 2��im
2
2E

= −
2im


2	e
= G5 s

�7�

2.3 FRF of Surface Normal Residual Displacement. The
reciprocal theorem was employed by Jacq et al. �20� to study the
residual displacement due to the plastic strain �ij

p . The normal
residual displacement u3

r can be expressed as an integration as
follows, which can be found from Eq. �1.23� in �20�:

u3
r�x,y� = 2	�

−�

� �
−�

� �
−�

�

�ij
p �x�,y�,z��


�ij
*�x� − x,y� − y,z��dx�dy�dz� �8�

where �ij
*�x�−x ,y�−y ,z� � is the elastic strain in the half-space at

point �x� ,y� ,z��, which is induced by the unit concentrated nor-
mal force applied on surface point �x ,y�. Applying double Fourier
transform on the residual displacement formula with respect to
coordinates x and y �FTxy� and using the FT property shown in the
Appendix, Eq. �8� becomes

u53
r�m,n� = 2	�

−�

�

�5 ij
p �m,n,z���5 ij

*�− m,− n,z��dz� �9�

Thus far, the horizontal coordinates are in the frequency do-
main, and the vertical coordinate z is in the space domain. The
subsurface domain is divided into Nz equispaced layers along the
z-axis, and the observation points locate on the centers of layers.
The residual displacement can be rewritten as the superposition of
the contributions of all layers, where plastic strains have nonzero
value

u53
r�m,n� = 2	�

k=1

Nz 
�
��k−1/2�

��k+1/2�

�5 ij
p �m,n,z���5 ij

*�− m,− n,z��dz��
�10�

The plastic strains are assumed to be independent of the z coordi-
nate in each layer, and then they can be factored from the integral,

u53
r�m,n� = 2	�

k=1

Nz 
�5 ijk
p �m,n��

��k−1/2�

��k+1/2�

�5 ij
*�− m,− n,z��dz��

= �
k=1

Nz

�5 ijk
p �m,n�G5 ijk

* �m,n� �11�

Here, �̃̃ijk
p means the double Fourier transform of the plastic strain

component �ij at the kth layer, and G̃
˜

ijk
* �m ,n�=2	���k−1/2�

��k+1/2�
�̃̃ij

*

�−m ,−n ,z��dz� is called the FRF of the surface residual displace-

ment corresponding to �̃̃ijk
p . Considering the strain and displace-

ment relationship, �̃̃ij
* can be expressed as

�5 ij
* =

FTxy�ui,j
* � + FTxy�uj,i

* �
2

�12�

Following the procedure shown in �17�, the FRF of displace-

ments ũ̃i
* due to the concentrated normal force can be derived and

listed in the Appendix . Thus, �̃̃ij
* can be developed, for instance,

2	�511
* �− m,− n,z�� = FTxy�2	u1,1

* ��− m,− n,z��

= �im2	u51
*��− m,− n,z��

= �2� − 1 + z�
�
m2


2 e−
z�

2	�513
* �− m,− n,z�� = �	u51,3

* + im	u53
*��− m,− n,z�� = − imz�e−
z�

�13�

Performing definite integral over terms �̃̃ij
* results in the following

FRFs:

G5 ijk
* �m,n� = Fij�m,n,z = ��k + 1/2�� − Fij�m,n,z = ��k − 1

2��
�14�

The functions Fij are defined by �Fij�m ,n ,z� /�z=2	�̃̃ij
*�−m ,

−n ,z� and listed as follows:

F11�m,n,z� = −
m2�2� + 
z�e−
z


3 ; F22�m,n,z� = F11�n,m,z�

F33�m,n,z� = �2�1 − ��



+ z	e−
z;

�15�

F12�m,n,z� = − mn
�2� + 
z�


3 e−
z

F13�m,n,z� = i
m�1 + 
z�


2 e−
z; F23�m,n,z� = F13�n,m,z�

2.4 FRF of Residual Stress in Half-Space by a Numerical
Approach. However, for the residual stress field in the half-space
caused by the plastic strain, the analytical form of FRF is unavail-
able, and the derivation needs significant analytical endeavor. On
the other hand, the method for calculating influence coefficients D
can be found from existing literatures �20,27�. An efficient way
needs to be explored to obtain the discrete series of FRF from IC.
As shown in Eq. �3�, IC is the continuous convolution of the
Green’s function and the shape function over the discrete element;
therefore,

D̃ = G̃ · Ỹ �16�

The relationship between the FT and DFT series is

D̂i =

�
r=−�

�

D̃��2�i/n�� − �2�r/���

�



D̃�2�i/n��
�

i = 0, . . . ,n − 1

�17�

The approximation relationship holds if the interval � is suffi-
ciently small. Only one term at r=0 is significant in the summa-

tion. Under this simplification, G̃ becomes
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G̃i = G̃�2�i

n�
	 =

D̃�2�i/n��

Ỹ�2�i/n��



� · D̂i

Ỹ�2�i/n��
i = 0, . . . ,n − 1

�18�

D̂i can be obtained by applying the FFT on the discrete IC series.
A rectangular pulse �zero order of continuity� whose continuous
Fourier transform is given in �18� is usually used as the shape

function. Based on Eq. �18�, the discrete series of FRF G̃i can be
calculated for further use.

The verification for this procedure is made through the com-
parison of the approximated FRF converted from IC with the ex-
act FRF for the surface displacement induced by a normal pres-
sure. The approach obtaining IC from the Boussinesq problem in
�25� used the rectangular pulse as the shape function, and the FRF
is shown in Eq. �5�. The element size is �=1 	m, and the mesh
dimensions are 64
64. As shown in Fig. 2, the relative error of
the numerically approximated procedure is �2% �one-quarter of

the frequency domain is shown, and G̃
˜

0 is the average value of the
FRF over the element at the origin�. Thus, the FRF obtained from
IC in this case is a good substitution for the analytical one. Note
that the accuracy of Eq. �18� depends on the contribution from
aliasing in Eq. �17�, and the approximation is particularly suitable

for the fast decaying D̃.

2.5 Numerical Formation of a Nominally Flat Surface. A
typical contact involving a nominally flat surface with a large
nominal contact area is shown in Fig. 1�a�. Statistical methods are
often used to obtain stochastic parameters that describe a group of
rough engineering surfaces �4–6�. However, contact analyses
based on surface statistics can hardly predict the interaction
among asperities and the subsurface stress-strain behavior. On the
other hand, the deterministic expression of a surface can be done
with the assistance of modern measurement technologies. How-
ever, measurement can only result in a digitized surface sample
over a finite area.

It is reasonable to use a sampled rough surface area as the
representative domain to form a large rough surface by periodi-
cally extending this domain, as shown in Fig. 1�b�. The character-
istic domain can be retrieved as the object under investigation.
Figures 1�c� and 1�d� give the representative space and surface
with discrete grids, respectively. Such a periodical domain exten-
sion is in favor of the application of the CC-FT algorithm, and the
response should have the same period as the excitation load.

2.6 Plasticity Consideration. For the plasticity modeling, the
von Mises criterion, as indicated in Eq. �19�, is chosen as the rule
to identify the transition to plastic deformation

f = �VM − �Y =�3

2
Sij:Sij − �Y �19�

where �Y and �VM are the yield limit and the von Mises stress,
respectively, and Sij =�ij − �1 /3��kk�ij. The isotropic Swift harden-
ing law is used in the current study, where the yield limit can be
represented in terms of the effective plastic strain as follows:

�Y = B�C + �p�n �20�

Here, B, C, and n are the work hardening parameters for the Swift
law, and �p is the effective plastic strain, defined as �p

=���2 /3��ij
p :�ij

p .
Yield occurs when f �0, i.e., when the von Mises stress is

larger than the current yield strength �Y��p�. The increment in the
plastic strain enhances the level of yield strength and reduces the
intensity of von Mises stress. The actual increment of the effective
plastic strain ��p should draw the stress-strain state back onto the
yield surface, i.e., f��p+��p�=0. An increment-based approach
�20� can be used to determine the variation of the effective plastic
strain, which is a function of stresses �ij, variations of stresses
��ij, existing plastic strains �p, and strain hardening parameters.
The increment of plastic strain components is then calculated
based on the plastic flow rule shown

��ij
p = ��p 3Sij

2�VM
�21�

3 FFT-Based Algorithms

3.1 DC-FFT. The contact response is a continuous convolu-
tion between excitation and the Green’s function. As discussed by
Brigham �26�, the discrete convolution �also named cyclic convo-
lution� via using the discrete Fourier transform �DFT� technique
requires sampling both the excitation and the Green’s function in
a finite domain and forming a periodic series. If the excitation is
nonperiodic, the alias phenomenon may occur along the domain
boundary. In order to avoid this error, Liu et al. �16� proposed a
DC-FFT algorithm, which is summarized in Fig. 3�a�, at the cost
of only doubling the problem domain. The FFT technique is ap-
plied to execute the DFT efficiently. For contact problems of
nominally flat surfaces with periodic roughness, however, the DC-
FFT algorithm is not immediately applicable.

3.2 CC-FT. On the other hand, the domain periodic extension
strategy in Sec. 2.2 validates the use of the FRF-based CC-FT
algorithm following the continuous convolution theorem. If the
period of the contact domain is L, all contact variables, such as
pressure and deformation, should also be periodic functions with
the same period. This periodic characteristic automatically fulfills
the periodic extension required by the DFT technique. Therefore,
only a single period is needed in the Fourier transform procedure
without any domain extension involved in the analysis. For the
detailed proof, readers may refer to Sec. 2.2 in �16�. The proce-
dure of CC-FT is illustrated graphically in Fig. 2�b�.

The discrete series G̃ is obtained by sampling the FRF at the
corresponding coordinates in the frequency domain. If the value
of a FRF at the frequency domain origin, which equals the area
under the corresponding Green’s function, is singular, than the
average value of the FRF over the element located at the origin
can be a substitution value at this point �17�.

3.3 DCD-FFT and a Mixed Algorithm. Another approach
for problems with periodic roughness can be developed based on
the DC-FFT method with certain modifications. As mentioned by
Liu et al. �16�, zero padding of excitation variables is one of the
measures to circumvent the alias error occurring on the boundary

Fig. 2 Relative error of the FRF transformed from the IC for
the Boussinesq problem
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of nonperiodic problems. On the contrary, in order to reproduce
periodic loading in neighboring periods, loading on the extended
domain can be directly duplicated from the original domain, rather
than zero padding. The modified DC-FFT algorithm with dupli-
cated padding is denoted as DCD-FFT in the paper.

Intuitively, the DCD-FFT algorithm is not as accurate and effi-
cient for periodic problems as the CC-FT algorithm, and it is
indeed supported by numerical examples discussed in the verifi-
cation section �Sec. 4� because it involves greater error and costs
more in computation power due to the double extension. How-
ever, the DCD-FFT algorithm can be used for certain specific
problems that the CC-FT algorithm can not readily handle. For
example, line-contact problems involve an infinite geometry in
one direction but finite geometry in the other. Surface roughness
can be formed through periodic extension along the direction with
infinite geometry. Neither CC-FT nor DC-FFT alone is valid for
this one-dimensional periodic and one-dimensional nonperiodic
problem. An approximate method can be developed, i.e., dupli-
cated padding pressure in the periodic direction �the DCD-FFT
algorithm� and zero padding pressure in the nonperiodic direction
�the DC-FFT algorithm�. This mixed method is depicted in Fig. 4.

4 Verifications and Application Results
Verifications of the FFT-based methods for periodic contact

problems were made through the comparision between the nu-
merical results obtained with these methods and the corresponding
analytical solutions. Elastioplastic contacts involving a bisinusoi-
dal surface and a engineering surface were then numerically in-
vestigated.

4.1 Verification, Stress Field due to a Bisinusoidal Surface
Pressure. Assuming a bisinusoidal pressure distribution in the
form of

p�x,y� = − p0 cos�2�

�
x	cos�2�

�
y	 �22�

is applied on a frictionless half-space. Here, � is the wavelength
of the pressure distribution and p0 the maximum pressure. The
analytical solution of the subsurface stress field caused by the
bisinusoidal surface tractions were given by Tripp et al. �8�. The
stresses in the half-space were calculated numerically with the
FFT-based methods in Sec. 3 in a physical domain of 2�
2�

�. The frequency response functions listed in Sec. 2.2 were
applied. When this problem was simplified into a nonperiodic
problem subjected to only one period of pressure, the solution can
be determined by the DC-FFT algorithm, whose results were also
included in the following discussion for comparisons.

Figure 5�a� presents the dimensionless von Mises stress profiles
along the x-axis below the surface at z=� /4, where one-half of
the simulated region is shown. The domain was meshed into
128
128
64 grids. The coordinates were normalized by the
pressure wavelength. The results obtained with the CC-FT and
DCD-FFT algorithms agree well with the analytical solution in the
entire simulation domain. The result with the DC-FFT algorithm
is close to the exact solution in the domain center but quickly
deviates from the analytical one near the boundary. In order to
further compare methods on the domain boundary, the dimension-
less von Mises stress profiles along the depth on the boundary of
the simulation region is given in Fig. 5�b�. Good agreements are
still found for the results with the CC-FT and DCD-FFT algo-
rithms, but those from the nonperiodic algorithm overestimate the
near surface stress and underestimate the values at deeper loca-
tions because it neglects the tractions on neighboring regions.

The relative error of the von Mises stress is defined as the
absolute difference between the analytical value and the numerical
result divided by the maximum pressure p0. These relative errors
calculated for results with different approaches along the x-axis at
the depth of z=� /4, are shown in Fig. 6, where �VM

* is the ana-
lytical stress value. Different grid numbers, 64
64
32, 128

128
64, 256
256
128 are chosen to study the effect of
mesh size. It is found from Fig. 6�a� that relative errors for the
results from the CC-FT algorithm are hardly visible, �10−6. The
increase in grid number does not result in less relative error. In
Fig. 6�b�, errors from the results obtained with the DCD-FFT
algorithm are �0.15% for all mesh sizes and has the same period
as the von Mises stress. The mesh refinement improves the nu-
merical result obviously �the relative error decreases to 0.01% for
the mesh size 256
256
128�. Relative errors for the nonperi-
odic solution obtained from the DC-FFT algorithm is negligible in
the domain center and becomes significant on the domain edge,
�18%. It should be mentioned that the grid number has little
effect on the results from the DC-FFT algorithm. Therefore, the
CC-FT algorithm should be used for periodic problems because of
its efficiency and accuracy.

4.2 Verification, Stresses due to a Cylindrical Contact. The
Hertz theory indicates that the elastic frictionless line contact be-
tween a cylinder and a flat surface produces a contact pressure in
the form of

Fig. 3 Schematic illustrations of FFT-based algorithms: „a… the
DC-FFT algorithm, and „b… the CC-FT algorithm

Fig. 4 Mixed method for one-dimensional periodic problems
„DCD-FFT and DC-FFT…
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p�x� = �p0
�1 − x2/aH

2 , �x� � aH

0, otherwise
� �23�

where aH is the Hertizan half contact width and p0 is the maxi-
mum contact pressure. For this line contact problem, the periodic
boundary condition can be applied along the cylinder axis, and the
nonperiodic contact condition along the perpendicular direction.
The DCD-FFT and DC-FFT algorithms should be applied on the
periodic direction and nonperiodic direction, respectively �the
mixed method in Sec. 3.3�. The size of the simulation domain is
4aH
16aH
8aH, which was divided into 256
256
128 grid
points.

The analytical solution of stresses due to the cylindrical contact
can be found in �24�. The maximum shear stress �1, given in Eq.
�24�, is used for comparison to the exact solution in �24�

�1 =
1

2
���11 − �33�2 + 4�13

2 �24�

On the other hand, a nonperiodic solution, ignoring the pressure
on the neighborhood, can be calculated by the DC-FFT algorithm
alone in order to examine the advantage of the mixed method. The
results of the dimensionless maximum shear stress versus depth at
the origin and an edge point are presented in Figs. 7�a� and 7�b�.
It can be observed that both the mixed method and DC-FFT algo-

rithms yield reasonably good solutions at the domain center as
compared to the exact one. The mixed method keeps the same
accuracy on the computational boundary y=8aH, while the results
obtained with the DC-FFT algorithm alone notably deviates away

Fig. 5 Comparisons of dimensionless von Mises stress pro-
files „a… along the x-axis at z=� /4, and „b… along depth z on the
domain boundary „x=�, y=0…

Fig. 6 Relative errors for the von Mises stress along the x-axis
at the depth of z=� /4 for the results obtained with „a… the
CC-FT algorithm, „b… the DCD-FFT algorithm, and „c… the non-
periodic approach „DC-FFT…
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from the analytical data. Here, the DC-FFT algorithm underesti-
mates the stress because the pressure influence from neighborhood
periods is neglected.

Relative errors of the maximum shear stress along the cylinder
axis at z=0.78aH, where the exact maximum value occurs, are
plotted in the Fig. 8 for the results obtained with different ap-
proaches, and �1

* is the analytical maximum shear stress. The
mixed method has uniform and small relative errors, �0.7%, over
the entire domain. The relative error obtained from the non-
periodic approach is �2% in the middle of the computational

domain, may be comparable to that of the mixed method. How-
ever, the error increases rapidly when the observation point is 6aH
away from the center point, and even differs by one order of
magnitude from that of the mixed method at the boundary. Table 1
lists the maximum relative error from the mixed approach over the
entire space for different mesh numbers and computation domain
sizes. Under the same domain size, mesh refinement does not
improve the result. On the other hand, even using the coarse mesh,
64
64
32, the mixed algorithm still yields good solutions if a
large extended computation domain, 4aH
16aH
8aH is used. In
addition, the domain extension along the cylindrical axis �0.67%
for 4aH
16aH
8aH� seems more helpful than that along the
perpendicular direction �0.99% for 8aH
16aH
8aH�. Therefore,
the mixed padding approach is capable of solving the one-
dimensional periodic line-contact problem, and the domain exten-
sion along the periodic dimension may help reduce the numerical
error.

4.3 Application, Elasto-Plastic Contact Involving a Bisinu-
soidal Surface. This section considers the contact of a rigid flat
plane with an elasto-plastic body with a bisinusoidal surface,
whose initial geometry hi is given by

hi�x,y� = Ap
1 − cos�2�x

�
	cos�2�y

�
	� �25�

where Ap and � are the amplitude and wavelength of the sinu-
soidal surface. Figure 9�a� gives the cross-sectional view the con-
tact. Suppose the flat surface is brought into contact with the
sinusoidal crests under a mean pressure p̄. According to Johnson
et al. �11�, if the mean pressure p̄ exceeds a certain value, p*

Table 1 Maximum relative errors of the Tresca stress obtained from the mixed algorithm for
different mesh numbers and domain sizes

Domain size

4aH
4aH
2aH 8aH
8aH
4aH 8aH
16aH
8aH 4aH
16aH
8aH

Grid number
Relative error

�%�

64
64
32 2.50 1.87 0.99 0.67
128
128
64 2.47 1.62 0.83 0.64

256
256
128 2.46 1.46 0.74 0.62

Fig. 7 Comparisons of the dimensionless maximum shear
stress along the depth: „a… at the origin point and „b… on the
domain boundary at y=8aH

Fig. 8 Relative errors of the maximum shear stress along the
cylindrical axis at z=0.78aH below the surface
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=�2�E*Ap /�, then the gap between the flat plane and valleys of
the sinusoidal surface should be completely closed. Here, E* is
the equivalent Young’s modulus. If p̄� p*, then only partial con-
tact occurs.

The exact solution for the contact pressure of the two-
dimensional wavy surface is not available; therefore, the CGM-
based iterative procedure �23� was employed here to obtain the
contact pressure and actual contact area. The increment of plastic

strain and residual displacement were determined by using the
semi-analytical approach discussed in �20�. Following the formula
in Sec. 2, the FRF discrete series should be obtained for the stress
and displacement when the plastic behavior was considered. Be-
cause of the periodicity of the sinusoidal surface, the CC-FT al-
gorithm was used as the core numerical technique to accelerate
the stress evaluation process. The dimension of the characteristic
domain from the infinite body is 2�
2�
�, which was meshed
into 64
64
32 grid elements. Parameters in the simulation were
listed in Table 2.

Because of the difficulty in predicting the contact area for this
problem, Johnson et al. �11� performed an experimental investiga-

Table 2 Parameters in the simulation

Parameters Value Parameters Value

B 945 MPa Ap 0.1 um
C 20 � 32 um
n 0.085 p̄ / p* 0.08, 0.14, and 0.35

E 210 GPa � 1 um
� 0.3 	 f

0.3
�Y 1219 MPa

Table 3 Ratios of real to apparent contact area

p̄ / p* 0.08 0.14 0.35

Numerical results 0.173 0.275 0.583
Experimental results 0.170 0.280 0.520

Fig. 9 Contact involving a bisinusoidal elasto-plastic surface:
„a… cross section of the contact and „b… variations of the con-
tact area of the two-dimensional wavy surface as the pressure
ratio increases. White zones are the contact areas, and black
ones are noncontact areas.

Fig. 10 Dimensionless stress contours in the plane y=0 when the external load is applied: „a… the total von Mises stress
without friction, „b… the total von Mises stress with friction, �f=0.3, „c… the residual von Mises stress without friction, and „d… the
residual von Mises stress with friction, �f=0.3. Rectangles mark the maximum stresses in the body and circles mark the
maximum stresses on the surface. The maximum values are labeled above the figures.
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tion of the variation of the contact area as a function of the exter-
nal load for a purely elastic contact. The current work evaluated
the contact areas at three pressure ratios, p̄ / p*=0.08, 0.14, and
0.35. The shape and size of the contact area for these cases are
presented in Fig. 9�b�. The contact spots are approximately circu-
lar at the light load, p̄ / p*=0.08 and then become rectangles at
p̄ / p*=0.14. When the pressure ratio, p̄ / p*, further increases up to
0.35, the separate contact spots link to each other and form a
continuous region embracing rectangular noncontact areas. The
ratios of real to apparent contact area obtained from the numerical
simulation and the experiment are listed in Table 3. The numerical
results show a satisfactory agreement with the experimental ob-
servations in �11�. Note that the axes of Fig. 9 in �11� are at 45 deg
to those of Fig. 9�b� in this paper.

In order to study the effect of shear traction, a surface shear
stress, equal to the production of a friction coefficient and the
normal pressure, was applied along the positive x-axis. 	 f =0.3
and p̄=0.35p* were chosen.

Figure 10 plots the contours of dimensionless von Mises stress
in the vertical plane of y=0 for the total value and the residual
part, respectively. The von Mises stress was normalized by the
yield strength �Y, and the coordinates x and z were normalized by
the sinusoidal wavelength �. Both the total and residual von Mises
stress have the period of � in the space domain no matter whether
the shear is applied or not. For the frictionless case, the maximum
values of the total and residual stress are located at about z
=0.1� below the sinusoidal crests. When friction is applied, the
maximum total stress increases by 4% while the maximum re-
sidual stress increases significantly by 55%. In addition, there are
two local maximum values for the total and residual stress for the
frictional case; one is at the same location as that in frictionless
contact case, marked by the rectangle in Fig. 10, whereas the other
is on the contact surface, marked by the circle in Fig. 10.

The effect of friction on the residual surface displacement and
subsurface effective plastic strain are given in Fig. 11. The re-
sidual displacement and plastic strain still have the same periodic
properties as the surface geometry. With the presence of the shear
traction, the maximum plastic strain increases �52% and the
depths of residual dents caused by the plastic strain also increase
�67%. In addition to that, the peaks of effective plastic strain
offset along the direction of shear traction. On the other hand, the
valleys of surface residual dents remain in the same position.
Humps of the residual displacement can be found on the leading
edges of the dents while the shear is applied.

4.4 Application, Elasto-Plastic Contact Involving a Rough
Surface. A real ground rough surface patch was digitized with a
phase-shift interferometer. The sampling mesh dimension is 128

128, and the mesh element is 7 	m
7 	m in size. A virtual
ground rough surface can be formed through periodically extend-
ing this representative patch along two dimensions. Figure 12�a�
presents the representative domain in a perspective view. Along
the depth direction, the domain was discretized into 32 layers
spaced with 7 	m each. This rough surface is brought into contact
with a smooth flat surface under a mean pressure equal to 0.2�Y.
The material properties are the same as those used in Sec. 4.3.

The dimensionless contact pressure is given in Fig. 12�b�. Spo-
radic pressure peaks can be found on the rough surface, and the
real contact area is only 7.54% of the apparent contact area at this
loading condition. Figures 12�c� and 12�d� plot the dimensionless
total and residual von Mises stresses at the depth of z=4Rq, where
Rq is the rms roughness. The maximum value of the residual stress
differs by one order of magnitude from that of the total stress.
Because of the effect of the residual deformation, the rms rough-
ness on the releasing of load reduces to 1.66 	m from its original
value of 1.68 	m.

5 Conclusions
This paper presents a three-dimensional numerical model,

based on the continuous convolution and Fourier transform �CC-
FT� algorithm and the discrete convolution and fast Fourier trans-
form algorithm modified with duplicated padding �DCD-FFT�, for
solving the elasto-plastic contact of nominally flat surface. For
periodic problems, the CC-FT method yields the most accurate
solution and does not require any computation domain extension.
A mixed algorithm, DCD-FFT and DC-FFT, is developed for
simulating the line contact involving a nominally flat surface.

The FRFs of the elastic subsurface stress and the residual sur-
face displacement have been derived analytically. A numerical ap-
proximation approach of transforming IC into the discrete series
of FRF was utilized to obtain the FRF of the residual stress.

Model verification was conducted by comparing the numerical
results of the half-space stress field induced by a periodic surface
pressure to analytical solutions. The results show that the CC-FT
algorithm is more accurate and efficient than the DCD-FFT algo-
rithm. The ability of the mixed algorithms was examined with a
line contact problem, and the results indicate that this method is
sufficiently accurate.

The CC-FT algorithm was applied to evaluate an elasto-plastic
contact involving a bisinusoidal surface, including both the nor-

Fig. 11 Comparisons of plastic contact with and without fric-
tion: „a… the dimensionless residual normal surface displace-
ment along the x-axis and „b… the effective plastic strain along
the x-axis at the depth of z=0.1�
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mal and tangential loading. The increase in the mean normal pres-
sure changes the contact spots from circles to rectangles and, fi-
nally, to a continuous region. The introduction of the shear
traction evidently enhances the intensity of the residual stress and
the plastic deformations. The positions of the maximum values of
the stress and the plastic strain also shift toward the surface. This
model was further used to simulate an elasto-plastic contact in-
volving a flat ground surface. A reduction in roughness due to the
residual deformation has been identified.
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Nomenclature
p ,s � pressure and shear tractions, MPa

p̄ � average pressure applied on the contact interface
ui � displacement
u3

r � normal residual displacement
�ij ,�ij � stress, strain

�VM ,�Y � von Mises equivalent stress, Yield Strength
�ij

p � plastic strain

G ,G5 � Green’s functions, the Frequency response
function

D ,Y � influence coefficient, Shape function
	 � shear modulus, 	=2E / �1+��, GPa

	e � equivalent shear modulus,
1 /	e= �1+���1−2�� /2E, GPa

	 f � friction coefficient
E ,� � Young’s modulus, GPa, Poisson ratio

E* � equivalent Young’s modulus, GPa, E*=E / �1−�2�
x ,y ,z � space coordinates

m ,n � frequency coordinates corresponding to x ,y
� �, � partial differential operator
�,

ˆ � continuous FT operator, Discrete FT operator
* � continuous convolution
i � pure imaginary unit, �−1

� � wavelength of sinusoidal geometry or pressure
distribution

Ap � amplitude of sinusoidal geometry
� � space grid size

aH � Hertzian half contact width �cylinder contact�
�1 � maximum shear stress
�p � effective plastic strain

B ,C ,n � work hardening parameters of the Swift law
Rq � rms, the root mean square of surface roughness

Appendix

1 One of the Properties of Fourier Transform

If f�x� =�
−�

�

g���h�� − x�d�

f̃�m� =�
−�

� ��
−�

�

g���h�� − x�d�	e−imxdx

Fig. 12 Simulation results of the elasto-plastic contact involving a ground surface „mean pressure, p̄=0.2�Y…: „a… The surface
geometry of the ground surface „rms roughness, Rq=1.68 um…, „b… dimensionless surface pressure, „c… dimensionless total
von Mises stress at z=4Rq, and „d… dimensionless residual von Mises stress at z=4Rq
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set � = � − x

f̃�m� = ��
−�

�

g���e−im�d�	 · ��
−�

�

h���e−i·�−m�·�d�	
= g̃�m� · h̃�− m�

2 FRF of Displacement Due to a Unit Concentrated
Normal Force

p5 �m,n� = 1, s5�m,n� = 0

2	u51
*�m,n,z� = − im

2� − 1 + z



2 e−az

2	u52
*�m,n,z� = − in

2� − 1 + z



2 e−az

2	u53
*�m,n,z� = �2�1 − ��



+ z	e−az
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The problem of a functionally graded plane with a circular inclu-
sion under a uniform antiplane eigenstrain is investigated, where
the shear modulus varies exponentially along the x direction. By
introducing a new function which satisfies the Helmholtz equation,
the general solution to the original problem is derived in terms of
series expansion. Numerical results are then presented which
demonstrate clearly that for a functionally graded plane, the
strain and stress fields inside the circular inclusion under uniform
antiplane eigenstrains are intrinsically nonuniform. This phenom-
enon differs from the corresponding homogeneous material case
where both the strain and stress fields are uniform inside the cir-
cular inclusion. �DOI: 10.1115/1.2745391�

Keywords: functionally graded material, Eshelby eigenstrain, cir-
cular inclusion, antiplane deformation

1 Introduction
The well-known result of Eshelby �1� for an elastic space shows

that the strain and stress fields inside an ellipsoidal �and elliptical�
inclusion under uniform eigenstrains are uniform. Eshelby’s result
is based on the assumption that the infinite elastic space is isotro-
pic and homogeneous. Recently, this classic Eshelby problem has
been extended to material anisotropy and even piezoelectric cou-
pling �2–4�, with applications in novel strained semiconductor
quantum structures �see, e.g., �5,6��.

As a new type of composites, functionally graded materials
�FGMs� were initially designed as thermal barrier materials for
aerospace structures �Koizumi �7��, in which the volume fractions
of different constituent materials vary continuously from one side
to the other, resulting in smooth variation of material properties. If
a FGM space contains an ellipsoidal or elliptical inclusion with
uniform eigenstrains, are the strain and stress fields inside the
inclusion still uniform? To the best of the authors’ knowledge, the
Eshelby problem in FGMs has not been addressed, although the
fracture problem �see, e.g., �8�� and some Green’s function prob-

lems �see, e.g., �9–13�� in FGMs were investigated before. Since
the general Eshelby problem in FGMs is very difficult, we con-
sider here only the simple situation in which a FGM plane con-
tains a circular cylindrical inclusion under uniform antiplane
eigenstrains. Furthermore we assume that the shear modulus of
the FGM varies exponentially along a fixed direction, say the x
direction, as adopted by Erdogan et al. �8�. In doing so, it is
possible for us to derive a general solution to this problem by
introducing a new function � which satisfies the Helmholtz equa-
tion. The final series solution is expressed in terms of the modified
Bessel functions.

2 General Solution
We consider an infinite FGM in the x-y plane as shown in Fig.

1, and assume that the shear modulus � of the FGM varies expo-
nentially in the x direction as �e.g., �8��

� = e2�x�0 �1�

where �0 is the homogeneous shear modulus and � is the gradient
factor of the FGM.

We point out that while various processing techniques have
been proposed for FGMs �e.g. �14–17��, including the isotropic
FGM as a special case �15�, the exponential variation described by
Eq. �1� could be difficult to achieve experimentally. Therefore, Eq.
�1� should be regarded as a simplified FGM model to the more
complicated FGMs fabricated from laboratories. We further men-
tion that an isotropic FGM, as the one assumed here, could be
realized only for certain spatial variations of composition �14�
since random distributed microstructures �i.e., two distinct phases
distributed in a disordered fashion� would be locally anisotropic
�18–20�, with the latter requires more involved analysis.

We also assume that, within the FGM, there is a circular inclu-
sion r=�x2+y2�R which undergoes uniform antiplane eigen-
strains �zx

* and �zy
* . The boundary condition along the inclusion-

matrix interface r=R is assumed to be fully bonded, and can be
expressed in terms of the out-of-plane elastic displacements w�1�

inside the inclusion and w�2� outside, as

w�1� + w* = w�2�

�w�1�

�r
=

�w�2�

�r

�r = R� �2�

where w*=r��zx
* −i�zy

* �ei�+r��zx
* +i�zy

* �ei� is the additional dis-
placement corresponding to the uniform eigenstrains �zx

* ,�zy
* . The

first condition in Eq. �2� states that the displacement is continuous
across the interface; while the second one in Eq. �2� implies that
the traction �zr is continuous across the interface. Furthermore, it
is easy to show that w�1� and w�2� satisfy the following partial
differential equations:

�2w�1�

�x2 +
�2w�1�

�y2 + 2�
�w�1�

�x
= 0 �x2 + y2 � R

�2w�2�

�x2 +
�2w�2�

�y2 + 2�
�w�2�

�x
= 0 �x2 + y2 � R �3�

We now introduce a new function � which is related to w
through the following relation:

w = e−�x� �4�

It is easy to show that, in terms of the new function �, the bound-
ary condition �2� can be equivalently expressed as

��2� − ��1� = e�xw*

���2�

�r
−

���1�

�r
= �e�x cos �w* �r = R� �5�

where ��1� and ��2� are within and outside the inclusion, respec-
tively. They satisfy the following Helmholtz equations:
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�2��1�

�x2 +
�2��1�

�y2 − �2��1� = 0 �x2 + y2 � R

�2��2�

�x2 +
�2��2�

�y2 − �2��2� = 0 �x2 + y2 � R �6�

In view of Eq. �6�, ��1� and ��2� can be expressed in terms of
series expansion as

��1� = �
n=−	

+	

An
�1�In����r�ein� 0 � r � R �7�

��2� = �
n=−	

+	

An
�2�Kn����r�ein� r � R �8�

where In and Kn are the modified nth-order Bessel functions of the
first and second kinds, respectively; An

�1� and An
�2� are unknown

coefficients to be determined. In addition, the exponential function
e�x can be expanded as follows:

e�x = �
n=−	

+	

In��r�ein� �9�

Therefore, the two terms on the right-hand side of Eq. �5� can
be expanded as

e�xw* = R �
n=−	

+	

�In−1��R���zx
* − i�zy

* � + In+1��R���zx
* + i�zy

* ��ein�

�10�

� cos �e�xw* =
�R

2 �
n=−	

+	

��In−2��R� + In��R����zx
* − i�zy

* � + �In��R�

+ In+2��R����zx
* + i�zy

* �	ein� �11�
By enforcing the boundary condition �5�, we determine the un-

known expansion coefficients in Eqs. �7� and �8� as


An
�1�

An
�2� � =

R

Kn����R�In�����R� − In����R�Kn�����R�

Kn�����R� − Kn����R�

In�����R� − In����R� �

 � In−1��R���zx

* − i�zy
* � + In+1��R���zx

* + i�zy
* �

�

2���
��In−2��R� + In��R����zx

* − i�zy
* � + �In��R� + In+2��R����zx

* + i�zy
* �	 
 �12�

where the prime � �� denotes the derivative with respect to the
variable in the parentheses.

We mention that the following identities are useful in the cal-
culation of the coefficients:

In��x� =
In−1�x� + In+1�x�

2

Kn��x� = −
Kn−1�x� + Kn+1�x�

2
�13�

which can be easily derived using the definitions that

In�x� = i−nJn�ix�

Kn�x� =
�

2
in+1Hn

�1��ix� �14�

where Jn and Hn
�1� are the nth order Bessel and Hankel functions

of the first kind. The other useful identities are

Jn��x� =
Jn−1�x� − Jn+1�x�

2

Hn
�1���x� =

Hn−1
�1� �x� − Hn+1

�1� �x�
2

�15�

We add that Eq. �9� can be easily derived from the following
Jacobi-Anger expansion �21�:

eikx = �
n=−	

+	

inJn�kr�ein� �16�

by taking �=ik and using the definition of In in Eq. �14�.

3 Numerical Results
As a numerical example, we consider a circular inclusion with

uniform eigenstrains �zx
* �0 and �zy

* =0. We truncate the series in
Eqs. �7� and �8� at n= ±10 in order to obtain a result with a
relative truncation error less than 0.1%.

Figure 2 shows the distribution of the normalized stress com-
ponent

� = −
�zx

�0�zx
*

where

Fig. 1 An infinite FGM plane containing a circular inclusion
with uniform antiplane eigenstrains
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�zx = �
�w

�x
= �0e�x�− �� +

��

�x
�

along the x axis for four different gradient parameters �*=�R
=0,0.2,0.5,1. It is noted that, for �*=0, which corresponds to a
homogeneous plane, variation of � obeys the following exact ex-
pression, which can also be derived from the result of Ru and
Schiavone �22�:

� = �1, �x� � R

�R

x
�2

, �x� � R � �17�

It is well known that the stress field inside the circular inclusion
is uniform when the plane is homogeneous, which is the classic
Eshelby result. When �*�0 for an FGM plane, however, the
stress field inside the circular inclusion is no longer uniform with
its maximum value being always reached at x=R �Fig. 2�.

Figure 3 shows the variation of the maximum stress �max as a
function of �*. It is observed that �max is a monotonic increasing
function of �*. The influence of the gradient parameter �* on
�max is significant. For example, when �*=3, �max=98.3133, a
value nearly 100 times of the one corresponding to the homoge-
neous material case ��max=1 for �*=0�.

Besides the stress distribution, we also show in Fig. 4 the dis-
tribution of the normalized total strain component �being an ele-
ment of the Eshelby tensor �1��

� = ���zx
�1� + �zx

* �/�zx
* , �x� � R

�zx
�2�/�zx

* , �x� � R
� �18�

along the x axis for four different gradient parameters �*

=0,0.2,0.5,1. In Eq. �18�,

�zx
�1� =

1

2

�w�1�

�x

and

�zx
�2� =

1

2

�w�2�

�x

are the elastic strains inside and outside the inclusion, respec-
tively. Similarly, Fig. 4 demonstrates that the Eshelby tensor
within the circular inclusion is no longer uniform for an FGM
plane ��*�0�.

Figure 5 shows the distribution of the normalized total displace-
ment

Fig. 2 Distribution of the normalized stress component �=
−„�zx /�0�zx

*
… along the x axis for different gradient parameters

�*=�R=0,0.2,0.5,1

Fig. 3 Variation of the maximum stress �max as a function of �*

Fig. 4 Distribution of the normalized total strain component �
along the x axis for different gradient parameters �*

=0,0.2,0.5,1

Fig. 5 Distribution of the normalized total displacement �
along the x axis for different gradient parameters �*

=0,0.2,0.5,1
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 = ��w�1� + w*�/R�zx
* , �x� � R

w�2�/R�zx
* , �x� � R

� �19�

along the x axis for four different gradient parameters �*

=0,0.2,0.5,1. It is observed that the displacement field inside the
circular inclusion in an FGM plane �especially when �*=1� is no
longer a linear function of the coordinate x. Furthermore, the mag-
nitude of 
 for x�R is very small when the gradient parameter �*

is large. For example, for a large �*, say �*�1, the magnitude of

 at x=R is 
�0. It is further interesting that, for a large �*, the
corresponding stress � at x=R is also large ���3.5 at x=R�. On
the other hand, for �*�1, the magnitude of 
 at x=−R is very
large �
�−2.5 at x=−R� while that of � at x=−R is small ��
�0 at x=−R�. Finally, when �*=0, i.e., for the corresponding
homogeneous material case, the displacement 
 along the x axis
obeys the following exact expression �22�:


 = �x/R , �x� � R

R/x , �x� � R
� �20�

which implies that 
 within the inclusion is proportional to the
coordinate x, while outside the inclusion 
 is inversely propor-
tional to the coordinate x.

We remark that the dimensionless gradient parameter �* cannot
be arbitrarily large as this would result in a FGM with a very large
shear modulus. For example, the modulus corresponding to �*

=3 at x=R would be more than 400 times larger than the one
corresponding to the homogeneous material case �i.e., �0 when
�*=0�.

4 Conclusions
We have analyzed the displacement, strain, and stress fields for

an infinite FGM plane containing a circular inclusion under uni-
form antiplane eigenstrains. The solution is expressed in terms of
series expansion by virtue of a new function. Numerical results
show that, inside the circular inclusion, the stress and strain fields
are nonuniform and the displacement field is no longer a linear
function of the coordinates x and y when the elastic plane is func-
tionally graded �or inhomogeneous in shear modulus�. A similar
problem that could be addressed in the future is for the corre-
sponding transversely isotropic and piezoelectric FGM plane with
a circular inclusion under uniform antiplane eigenstrains and in-
plane eigenelectric fields. Finally we indicate again that the FGM
plane studied in this research is assumed to be isotropic and ex-
ponentially graded to simplify the analysis. Introduction of local
anisotropy �18–20� to our model will require more involved in-
vestigation and thus form the subject of future research.
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The need to take into account the oscillation of a system is a
special feature in the linear problem of the stability of a cantile-
vered rod under a follower force. Involvement of viscoelastic ma-
terials leads to damping of the oscillation hence to overestimation
of critical loads. This new problem is solved here by means of an
additional term introduced into the constitutive equation and pro-
portional to the fractional time derivative with complex order—
besides the inertial one. The effects contributed by the damping
ratio, the real part of the order and the corrective role of its
imaginary part on the shape of the bifurcation line, on its maxi-
mum and on the disposition of the inflection and maximal deflec-
tion points on the centerline of the deformed rod during the sec-
ondary loss of stability, are discussed. �DOI: 10.1115/1.2745825�

Keywords: damping, fractional calculus, stability, viscoelasticity

Introduction
In many recent studies of the viscoelastic deformation pro-

cesses, it was shown that the behavior of the material can be
described with a high degree of accuracy with the aid of models
containing a fractional differential operator. Its order is chosen
either the same for the entire data base e.g., �1,2�, as constant over
a certain intervals of the parameters �3�, or as a certain continuous
function �4�. In the last case, the time-dependent order function
accumulates at each moment the previous history of the deforma-
tion process. Theoretical studies of oscillating processes showed
that the presence in the constitutive equation of a term propor-
tional to a fractional derivative is equivalent to introduction into
the system of an element acting either as an additional damper
�viscous element�, or as stiffness �spring�. The character of this
action is determined by the order of the operator. Existence of
order values, for which the fractional differential term in the equa-
tion leads to intensification of the stiffness, was shown in �5�. A
method for calculating the boundary between the respective re-
gions in which the two properties of the introduced element pre-
dominate was proposed in �6�.

In the studies mentioned above and close to the discussed
theme studies, it was assumed that the operator order is real. The
first attempt to construct a model involving an operator with a
complex fractional order was undertaken in �7�. Modeling of os-
cillating processes gives rise to an additional parameter, which
permits more accurate description of the mechanical properties of

viscoelastic deformation. The authors of �7� demonstrated this as-
sertion on two models via comparison of numerical and experi-
mental results.

In the proposed work, the authors’ goal is utilization of the
properties of the differential operator with complex fractional or-
der in the analysis of dynamic stability of a rod subjected to a
follower force and capable of dissipation. The problem consists in
the following. Let us consider a rod, rigidly fixed at one end
�cantilever� and loaded by a follower force at the other. The force
is called “follower,” if in the process of loss of stability its direc-
tion obeys some particular law other than that of gravity. Such, in
particular, is the force whose direction remains tangent to the axis
of the rod as it deforms �Fig. 1�. In Euler’s well-known problem
on the stability of a rectilinear rod the force is assumed to be
aligned with its initial axis and therefore is not a follower �dead
force�. In fact in the case of a follower force, Euler’s problem is
unsolvable in its linear static setting: the rod cannot lose stability
whatever the compressive force. For a solution to exist a dynamic
stability criterion is needed, with the constitutive equation of the
process containing, besides the terms of stiffness and force, also
one of inertia. After subordinating the general solution of this
differential equation to the boundary conditions at the rod ends,
we will obtain the final equation for determining the eigenvalues.
The latter makes it possible to establish the dependence between
the critical force P and the frequency �. The plotted function P
= P��� is shown in Fig. 2 �solid line�. On the left side of the loop,
the loss of stability predominates with respect to the first mode; on
the right, to the second. At its maximum, P exceeds the critical
Euler’s force for the same rod approximately eight times. The
damping effect in �8� is obtainable by introducing an additional
term in the constitutive equation proportional to the first time
derivative. An analogous situation exists in the case of dynamic
stability of the flexible tubes carrying a flowing liquid �9�.

The stability problem of rods loaded by follower forces remains
of interest in the field of mechanics because of the need for better
evaluation of the strength characteristics of structures, especially
those of airborne vehicles. Study of bending of a rod in the second
mode frequently proves of particular importance, since in this
case, the points appear at which structural failure can occur as a
result of rupture of the bearing elements. In a recent article �10�,
new results about the supercritical behavior of a rod were obtained
on the basis of the nonlinear theory of the bending of rods, with
special attention to the disposition of critical points �inflection and
maximal pressurization� along the rod line. Damping, however, is
not discussed.

The present paper deals with the dynamic stability of a cantile-
ver rod in the presence of dissipation, simulated by a fractional
differential operator with complex order. The damping effect of
the real and imaginary parts of the order on the loss of stability
under tangential follower forces is evaluated.

Stability of Viscoelastic Rod
Consider a thin elastic rod of constant section, loaded by a

tangential force P and undergoing small oscillations in plane xOz
about its undeformed rectilinear equilibrium configuration �Fig.
1�. Let w�x , t� be a small deviation at any point x of the rod, EJ the
flexural rigidity of its section, and m its mass per unit length. The
equation of these small oscillations takes the form �8�

EJ
�4w

�x4 + P
�2w

�x2 + m
�2w

�t2 = 0 �1�

The model of viscoelastic deformation entails introduction in
Eq. �1� of additional term dissipation. This correction is usually
effected through replacement of the constant quantity E by the
differential operator E*=E�1+��� /�t��. Our study being carried
out within the framework of fractional differentiation, we take the
relaxation modulus of elasticity as
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E* = E�1 + ��0
�

�t
��+i�� Dt

�f�t� =
1

��m − ��	
−�

t

�t

− ��m−1−�f���d� �2�

where m is the integer part of 1+Re �. We use the Weyl definition
of a fractional differential operator. The damping ratio �0 has the
dimensionality s.

The boundary conditions at the fixed end, i.e., x=0, and at the
free end, i.e., x=L, read

w�0,t� =
�

�x
w�0,t� = 0

�2

�x2w�L,t� =
�3

�x3w�L,t� = 0 �3�

Equation �1� with the relaxation modulus �2� satisfies the func-
tion w�x , t�=V�x�exp�i	t�, where V�x� and 	 are an unknown
function and an unknown constant. Substituting it in �1�, we ob-
tain an equation which, after introduction of dimensionless vari-
ables and parameters,


 = x/L v�
� = V�x�/L u = PL2/EJ � = 	L2
m/EL

� = �0

EJ/mL4

takes the form �1+ �i����+i��v�+uv�−�2v=0.
We seek the solution of this linear equation with constant coef-

ficients in the form v�
�=exp�r
�. The characteristic biquadratic
equation

�1 + �i����+i��r4 + ur2 − �2 = 0 �4�

has four roots rj =� j + i� j rj+2=−rj j=1,2.
Applying to the general solution,

v�
� = �
j=1

4

Aje
rj
 �5�

the boundary conditions �3�, we obtain a homogeneous set of
linear algebraic equations:

�
j=1

4

Aj = 0 �
j=1

4

Aj�� j + i� j� = 0 �
j=1

4

Aj�� j + i� j�2 exp�� j + i� j� = 0

�
j=1

4

Aj�� j + i� j�3 exp�� j + i� j� = 0 �6�

The existence condition for a nonzero solution of this set is a
zero value of the determinant D�u ,� ,� ,� ,�� of the matrix com-
prising the coefficients adjoining Aj in set �6�. The interdepen-
dence of the parameters u and � for each triad �, �, � is readily
found by Newton’s iteration technique. In the calculations, the
initial value of ��0� was chosen as 10 for the first mode and 20 for
the second, 
�=0.02. Convergence was sufficiently fast, so that
the first four significant digits were established after 5–6 itera-
tions.

The numerical and graphical results demonstrated below
present the real part of the output characteristics. Let us note the
following. For �=0, two roots of Eq. �4� are real and two imagi-
nary. In this case all calculation results of interest are real. For
��0 these results become complex; in evaluating the influence of
the imaginary part on the data the real part was replaced by its
absolute value �for example, Re�umax� by �umax� or Re 
 by �
��.
However, within the accepted limitations on the external param-
eters �0���0.005, 0.7���1, �� � �0.5�, no sufficiently notice-
able changes were observed either in the qualitative or in the
quantitative pattern.

Fig. 1 Modes of equilibrium state of rod: 1–first; 2–second.
Critical points: x–inflection, o–maximal deflection

Fig. 2 Bifurcation lines u=u„�…
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Damping Effect of the Differential Operator Param-
eters

Study of the dynamic stability of a rod involves the dependence
u=u��� between the parameters � and u, proportional to the os-
cillation frequency and compressive follower force, respectively.
Each point on the graph of this dependence corresponds to bifur-
cation of the equilibrium state of the rod. The left-hand branch
corresponds to loss of stability with respect to the first mode and
right-hand to the second �lines 1 and 2 in Fig. 1, respectively�.
Plotted functions for some values of parameters �, �, and � are
shown in Fig. 2. The solid line refers to �=0 �Bolotin’s bifurca-
tion line�, the dashed lines refer to �=0.002, �=0.7 and the dot-
dashed lines to �=0.002, �=1. The parameter � was assigned the
values of −0.5, 0, 0.5. The most noticeable differences occur in
the second-mode bifurcation �right-hand branches in the graphs�.
Therefore, in considering the calculation results further, we con-
fine ourselves to the special features in the behavior of the maxi-
mal value of bifurcation line or of its right-hand branch. In other
words, we are concerned with the influence of the parameters �,
�, and � on the maximal critical force and the secondary loss of
stability.

For ��0, the bifurcation lines lie below Bolotin’s line, and
move upwards as � increases. The lines for �=0.7 initially lie
below those for �=1, and subsequently rise above it. The same
features are demonstrated in Table 1.

Bolotin’s line has umax=20.05. It can be noted that for each �,
the line �=0 plays the role of a “distorting mirror” for matched
lines with opposite sign of �.

In Figs. 3�a� and 3�b� are given sections of the surface
umax�� ,�� for �=const ��=−0.3, −0.2, 0, 0.2, 0.3: lines 1–5, re-
spectively� and for �=const ��=1, 0.9, 0.8, 0.7: lines 1–4�. For
��0 with increase of �, umax decreases monotonically. An in-
crease in the parameter � corresponds to higher viscosity of the
system, which leads to loss of stability on the lower bifurcation
line. For ��0, umax loses its monotonicity, although the down-
ward trend persists. The lines in the �=const sections are non-
monotonic. Each line in Fig. 3�b� has a maximum, which is
shifted to the left with decrease of �. For ��0, the surface
umax�� ,�� becomes folded.

Figure 4 shows the upper arcs of the bifurcation lines for �
=0.0005, 0.0045, �=0.8, 1.0, and �=0. umax increases with
damping ratio � and decreases with �.

It was established in �11�, in a study of the oscillations of a
system with a single degree of freedom, that inclusion of a term

proportional to the fractional derivative of real order in the con-
stitutive equation of motion is equivalent to appearance of an
additional element in the system with properties determined by
the damping ratio � and the order of differentiation �. The oscil-
lations of this system undergo damping, their frequency � de-
creasing with increase of � and decrease of �. The layout of the
lines in Fig. 4 shows prevalence this effect also in the present
system with infinite degrees of freedom. Decrease of the oscilla-
tion frequency under a constant compressive force renders the
system more stable, and a stronger force is needed to revert to the
bifurcation state. As consequence, the bifurcation line moves up-
wards together with increase of � and decrease of �.

Critical Points
The point at which the second derivative d2v /d
2 vanishes is

the inflection point of the rod centerline. The first mode has a
single inflection point at the clamped end. In the second mode, a
second inflection point appears, whose coordinate we denote by

1. The point at which the tangent and the centerline of the unde-
formed rod �the x-axis� coincide is the point of maximal deflec-
tion, whose coordinate for the second mode we denote by 
0.

The displacement of the rod point with loss of stability cannot
be determined unambiguously under the linear deformation
theory, but the following assumption can be made: the lower the

Table 1 Dependence of umax on parameters � and �

� �=−0.5 −0.25 0 0.25 0.5

0.7 17.56 19.73 21.19 21.22 20.81
0.85 18.44 19.45 20.62 20.77 20.63
1 19.14 19.51 20.37 20.54 20.52

Fig. 3 Sections of surface umax„� ,�…: „a… �=const and „b… �
=const

Fig. 4 Upper arcs of bifurcation lines for �=0
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point of inflection, the higher the curvature of the deformed rod at
the point of maximal deflection, which is the likeliest site this
point of rupture in the second mode.

Let us derive the equations for the coordinates of these points.
Using the first three equations of set �6�, we can write coefficients
Aj in the form Aj =A� j, where

�1 = r2
2�r1 − r2�er1+2r2 + 2r1

2r2er2 − r2
2�r1 + r2�er1

�2 = ��r1 + r2��1 + 2r2�3�/�r1 − r2�

�3 = r1
2�r2 − r1�e2r1+r2 + 2r2

2r1er1 − r1
2�r1 + r2�er2

�4 = ��r1 + r2��3 + 2r1�1�/�r2 − r1�

r1, r2 being the roots of the characteristic Eq. �4� that correspond
to the second mode. Substituting the above in the general solution
�5� and equating the first and second derivatives to zero, we have

v��
0� = A�
j=1

4

� jrj exp�rj
0� = 0 v��
1� = A�
j=1

4

� jrj
2 exp�rj
1� = 0

The graphs of the coordinate functions 
0�u� and 
1�u� for cer-
tain combinations of the parameters �, �, and � are shown in
Figs. 5�a� and 5�b�. The higher the line, the larger � and � and the
smaller �. As u��� approaches its maximum, the divergence of
the graphs becomes more significant and points 
0�u� and 
1�u�

descend towards the fixed end of the rod. For u�12, 
0 and 
1
depend on the compressive force, but are practically independent
of the other parameters.

Conclusion
In this work, the authors posed two problems: first, estimation

of the influence of viscoelasticity on the dynamic stability of the
rod, by recourse to the tool of fractional differentiation; second,
assessment of the approximational possibilities of the imaginary
part of the order of the differential operator. In publications on
fractional integro-differentiation in analysis of viscoelastic defor-
mation processes, the order of the operator is assumed, as a rule,
to be real, especially where experimental determination of the
order for real materials is concerned. In �7�, a complex order of
the differential operator made it possible to enlist the second pa-
rameter �imaginary part of the order� in approximating the depen-
dences in the investigated process. Here, however, our results
show that smooth behavior can be expected only for ��0. For
��0, it may occur that a small change in the input data would
lead to an unjustifiably large one in the output: a phenomenon
given the name of “fold catastrophe.” The unavoidable conclusion
is that the imaginary part of the order of the differential operator
as leveling parameter secures a smooth approximation only in the
region of its positive values. Accordingly, only results associated
with the condition ��0 are retained in the sequel.

Inclusion of a term proportional to the differential operator,
with damping ratio ��0, in the constitutive equation of motion,
leads to damped oscillations whose frequency increases with �.
Secondary bifurcation occurs at higher values umax and with de-
crease of the coordinates of the inflection point 
1 and of the
maximal deflection 
0. An increase in the maximal compressive
force umax “propels” the entire bifurcation line upwards, with si-
multaneous downward movement of the critical points.

The parameter � for values close to 1 imparts to the additional
device the properties of a viscous element, but with a decrease of
�, the device is transformed into a stiff spring. The frequency of
the damped oscillations increases as � decreases, umax increases,
and the critical points descend. In other words, decrease of � has
the same consequences as an increase of �. Transfer of the bifur-
cation line to a higher state makes for a higher stability of the rod,
but lowering of the critical points increases the likelihood of rup-
ture at point 
0.

The coordinates 
0 and 
1 depend on � and increase monotoni-
cally, whereas umax changes with � non-monotonically.

Loss of stability can occur at any combination of u and �
linked in a bifurcational dependence, but as the right-hand branch
ascends, the critical points descend.

The onset of “anomalous” �term in �5�; see also �6�� behavior of
the frequencies, in which the eigenfrequency of fractional differ-
ential model exceeds the analogous value in the purely elastic
oscillator, influences the duration of the initial period, after which
second-mode motion develops in the viscoelastic material.
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1 Introduction
Quasi-shallow �Q-S� shell theory, the independent extension by

Libai �1� and Koiter �2� of Marguerre’s shallow shell theory �3�,
assumes only that L, a typical wavelength of the deformation pat-
tern �Koiter’s phrase�, is small compared to R, a typical radius of
curvature of the shell’s reference surface. �Q-S theory is some-
times called D-M-V theory, after Donnell, Mushtari, and Vlasov.�
Compared to the Sanders-Koiter �S-K� linear shell equations �4�,
the equations of quasi-shallow shell theory are much simpler, in-
volving, for example, only two unknowns, the normal displace-
ment and a stress function, as opposed to, for example, three
displacement components and three stress functions.

The present Note derives a rigorous upper bound, in the energy
norm, on the difference between solutions of the S-K and Q-S
equations. A key is to regard the Q-S equations as the S-K equa-
tions with distributed surface loads. This idea was used in a recent
estimate �5� of the error in Novozhilov’s equations for general
�non-circular� elastically isotropic cylindrical shells. There, a sec-
ond key step was to obtain a particular solution of a cylindrical
membrane under arbitrary surface loads. However, for arbitrary
shells, such solutions do not seem to be readily available so, in-
stead of obtaining an exact error estimate via the Prager-Synge
hypercircle theorem �6� as in �5�, we are forced to accept an upper
bound on the error of a fully clamped shell that involves the
solution of the �presumed known� static Q-S equations in addition
to the lowest natural extensional frequency predicted by these
same equations. Despite its limitations, such an estimate yields
both quantitative and qualitative information. For example, as
boundary conditions of complete clamping are relaxed, the esti-
mate suggests that the error in the Q-S equations degrades.

2 Differential Geometry
Let x��1 ,�2� denote the twice differentiable position of the

orientable shell reference surface S, where ��1 ,�2� are Gaussian
coordinates, and let n�x� denote a unit normal to S at x. In stan-
dard notation, the covariant base vectors on S are defined and
denoted by a��x,���x /���, �=1,2, the covariant and contra-
variant components of the surface metric tensor by a���a�•a�

and a��a��=��
�, the Kronecker delta, the covariant components of

the surface curvature by b��=n •x,��, and the contravariant com-
ponents of the surface permutation tensor by ���. Covariant dif-

ferentiation on S will be denoted by a vertical bar, indices, as
usual, are raised or lowered with respect to the components of the
metric tensor, and n,�=−b�

�a�.

3 The Sanders-Koiter (S-K) and Quasi-Shallow (Q-S)
Shell Equations

The equilibrium equations of S-K theory may be written

�N��� + p = 0 �1�

where

N� = �N�� +
1

2
���S��M���a� − �M����n �2�

is the reduced contravariant stress resultant,

p = p�a� + pn �3�
is the external surface load, and

S�� =
1

2
����b�

� + ���b�
�� �4�

are the covariant components of Sanders’ tensor. Note that
a��S��=b��S��=0. In �2�, N�� and M�� are, respectively, the
contravariant components of the �modified, symmetric� stress re-
sultant and stress couple of S-K theory �4�. The underlined term in
�2� and in the equations to follow are absent in Q-S theory.

Taking the dot product of �1� with

u = u�a� + wn �5�
the displacement of the reference surface S, integrating over S,
and applying the divergence theorem, we obtain the mechanical
work identity:

	
�S

	�N� • uds +	
S

p • udS �	
S

N� • u,�dS �6�

where �S is the �assumed� piecewise smooth boundary of S, the
	� are the covariant components of the outward unit normal to �S
tangent to S, and s is arc length along �S. Because

u,� = �E�� + ���
�a� + ��n �7�
where

E�� =
1

2
�u���� + u����� − b��w �8�

is the extensional strain,


 =
1

2
���u���� �9�

is the rotation about the normal, and

�� = w,� + b�
�u� �10�

is the rotation about ���a�,

N� • u,� = N��E�� + S��M��
 − �M������ �11�

Now,

	
S

�M������dS =	
�S

�M� − H�dw/ds + b�
���u���ds

−	
S

M�������dS �12�

where �=��	� is the edge rotation, M =M��	�	� is the edge
bending moment, H=−M��	��� is the edge twisting moment, and
the �� are the contravariant components of a unit tangent vector
along �S in the direction of increasing arc length.
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Inserting �2� and �11� into �6� and then �12� into the resulting
equation and integrating H dw /ds by parts along �S, we obtain
the final form of the mechanical work identity in S-K theory:

	
�S

�N�� +

1

2
���S��M�� − ��b�

�H�	�u� + �dH/ds − �M����	��w

+ M��ds + �si

H�w +	

S
�p�u� + pw�dS

�	
S

�N��E�� + M��K���dS �13�

where

K�� =
1

2
������ + ������ + S��
 �14�

is the bending strain, the si locate the corners of �S, and 
H� is the
jump in the edge twisting moment at those corners. Boundary
conditions may be read off from the boundary integral and sum on
the left side of �13�.

The S-K and Q-S theories are completed by the addition of
stress-strain relations. For simplicity, we confine ourselves to elas-
tic isotropy so that

N�� = C��1 − 	�E���u� + 	a��E�
��u�� �15�

M�� = D��1 − 	�K���u� + 	a��K�
��u�� �16�

where

C =
Eh

�1 − 	2�
and D =

Eh3

12�1 − 	2�
�17�

E is Young’s modulus, h is the constant shell thickness, and 	 is
Poisson’s ratio.

4 The Error Estimate
Let an unknown with an overbar denote a solution of the Q-S

equations and a tilde denote an unknown depending on ū but

using expressions from S-K theory. Thus, N̄��= Ñ��, but M̄��

=D��1−	�w̄���+	a��w̄��
�� and

M̃�� = D��1 − 	�K̃���ū� + 	a��K̃�
��ū�� � M̄���w̄� + M̂���ū�

�18�

where

M̂�� = D�1

2
�1 − 	����b��ū���� + ��b��ū���� + 2S��
̄�

+ 	a����b��ū����� �19�

Now from �1� and �2� observe that ū satisfied the S-K equations
with p replaced by

p − 
�1

2
����S��M̃����

�

+ �b�
�M̃�����a� − �M̃�����n � p − p̃�ū�

�20�

so that the difference 
N��N�− Ñ� satisfies the equation

�
N��� + p̃ = 0 �21�

We now restrict attention to clamped boundary conditions. With

u=u− ū, we have, from �10� and �13�, 
u��S=0 and ��− �̃���S
=0, so that �21� and these boundary conditions imply the me-
chanical work identity

	
S

p̃ • 
udS � 2V�
u� �22�

where, by �15� and �16�, the strain-energy of any twice-
differentiable displacement field is

V�u�r =
1

2	S
�C��1 − 	�E��E�� + 	E�

�E�
�� + D��1 − 	�K��K��

+ 	K�
�K�

���dS � Ve�u� + Vb�u� � 0

if u � a rigid body displacement �23�

By Schwarz’ inequality, �Sp̃ •
udS���p̃ � �
u �dS
� �p̃ � �
u � �S�, where �S � � · �2��S � · �2dS and �S� denotes the area
of the reference surface. Thus,

2V�
u� � �p̃�ū���
u��S� �24�

Let

��û� = min
�V�u�

�u���S�
∀ �u� � 0, �u��S = 0 �25�

Physically, � /�m is the lowest natural frequency of the fully
clamped shell predicted by S-K theory, where m is the mass per
unit area of the reference surface S. In writing “min” instead of
“inf” and ��û� instead of �, we are assuming that there is a twice
differentiable displacement field û for which the minimum in �25�
is actually achieved.

The substitution of �25� with u replaced by 
u into �24� gives
us a bound on 
u in the energy norm:

�V�
u� � �2��−1�p̃�ū����S� �26�

5 A Computable Upper Bound
The obvious problem with computing the right side of �26� is

that the scalar � comes from S-K theory—the very theory to be
approximated by the simpler Q-S theory. To work with quantities
coming exclusively from Q-S theory, note that in membrane
theory �M��=0�, the field equations and boundary conditions of
both theories are identical and that complete clamping means
u���S=0; nothing can be said about the boundary values of w or its
normal derivative. Thus, let

��û� � min
�Ve�u�
�u���S�

∀ �u� � 0 �u��S = 0 �27�

Then,

��û� �
�Ve�û� + Vb�û�

�û���S�
= ��û� �28�

so that from �26�,

�V�
u� � �2��−1�p̃�ū����S� �29�

6 A Qualitative Error Estimate
If L denotes the “wavelength” associated with the deformation

we are trying to approximate by a solution of the Q-S equations
where, typically, L measures the width of an edge-zone layer,
then, from �16�, �19�, �20�, �23�, and �27�,

�p̃� = O�Eh3�ū�/L2R2�, ��û� = O��Eh/L� �30�

Thus,

�V�
u� = O��Eh�S�h2�ū�/LR2� �31�
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7 Conclusions
Our final error estimate �29� involves solutions of the Q-S equa-

tions only, although in addition to a given static problem an aux-
iliary eigenvalue problem must be solved. However, assuming the
numerical machinery is in place to handle the Q-S equations, this
additional calculation should require little additional effort.
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In this paper, a 2D wavelet-based spectral finite element (WSFE)
is developed for a anisotropic laminated composite plate to study
wave propagation. Spectral element model captures the exact in-
ertial distribution as the governing partial differential equations
(PDEs) are solved exactly in the transformed frequency-wave-
number domain. Thus, the method results in large computational
savings compared to conventional finite element (FE) modeling,
particularly for wave propagation analysis. In this approach, first,
Daubechies scaling function approximation is used in both time
and one spatial dimensions to reduce the coupled PDEs to a set of
ordinary differential equations (ODEs). Similar to the conven-
tional fast Fourier transform (FFT) based spectral finite element
(FSFE), the frequency-dependent wave characteristics can also be
extracted directly from the present formulation. However, most
importantly, the use of localized basis functions in the present 2D
WSFE method circumvents several limitations of the correspond-
ing 2D FSFE technique. Here, the formulated element is used to
study wave propagation in laminated composite plates with differ-
ent ply orientations, both in time and frequency
domains. �DOI: 10.1115/1.2755125�

1 Introduction
Composites are being used in aircraft structures because of their

several favorable properties. Study of wave propagation in such
composite structures is of much relevance because it helps one to
understand their behavior under high-frequency impact load en-
countered in gust, bird hit, tool drop, etc. Apart from this, wave
propagation analysis finds important applications in structural
health monitoring using diagnostic waves, control of noise, and
vibration. However, the behavior of composites at high frequen-
cies is more complicated than it is for their metallic counterpart
because of the presence of anisotropy, and very little literature is
specifically available on transient wave propagation analysis of
composite structures.

Wave propagation deals with loading of high-frequency content
and FE formulation for such problems is computationally prohibi-
tive because it requires large system size to capture all the higher
modes. These problems are usually solved in the transformed fre-
quency domain using Fourier methods and FSFE �1� is one such
method, especially tailored for wave propagation analysis.

In FSFE formulation for 2D structures �1�, nodal displacements
are related to nodal tractions through a frequency-wave-number-
dependent stiffness matrix. The mass distribution is captured ex-
actly, and the accurate elemental dynamic stiffness matrix is de-

rived. Consequently, in the absence of any discontinuities, one
element is sufficient to model a plate structure of any length, but
unbounded along the other lateral direction.

The main drawback of FSFE is that it cannot handle
waveguides of short lengths. This is because the required assump-
tion of periodicity in time approximation results in a “wrap-
around” problem for a smaller time window, which totally distorts
the response. However, in WSFE formulation, use of Daubechies
compactly supported wavelets �2� with localized basis for tempo-
ral approximation removes the wraparound problem and can effi-
ciently model undamped finite length waveguides. In addition, for
2D problems, FSFEs �1� are essentially semi-infinite, i.e., they are
bounded only in one direction. Thus, the effect of one lateral
boundary cannot be captured, and this can be attributed to the
global basis functions of the Fourier series approximation of the
spatial dimension. The formulated 2D WSFE also overcomes the
above problem and can accurately model 2D plate structures of
finite dimensions. This is again due to the use of localized
Daubechies scaling functions as the basis for approximation of the
spatial dimension.

The steps followed in 2D WSFE formulation are as follows.
Here, first Daubechies scaling functions are used for approxima-
tion in time and this reduces the governing partial differential
equation �PDE� into a set of coupled PDEs in spatial dimensions.
The wavelet extrapolation technique �3� is used for adapting
wavelets in finite domain and imposition of initial conditions. The
coupled transformed PDEs are decoupled through eigenanalysis.
This temporal approximation, imposition of initial conditions, and
decoupling of the reduced PDEs are very similar to that done in
WSFE formulation for 1D waveguides �4�. Next, each of these
decoupled PDEs are further reduced to a set of coupled ODEs by
using the same Daubechies scaling functions for approximation of
the spatial dimension. Unlike the temporal approximation, here,
the scaling function coefficients lying outside the finite domain
are not extrapolated but obtained through periodic extension for
unrestrained, i.e., free lateral edges. Each set of ODEs are also
coupled, and decoupling is again done using eigenvalue analysis.

Presence of elastic coupling in anisotropic laminated composite
plate results in coupled governing differential equations. Thus, the
final reduced ODEs after spatial and temporal approximations are
in the form of a set of coupled ODEs, for each temporal and
spatial sampling point. The solution of these ODEs to derive the
exact shape function involves determination of wave numbers and
the amplitude ratio matrix. Unlike isotropic cases, here the pro-
cess of solution is more complicated and is done by posing it as
polynomial eigenvalue problem �PEP�.

It should be mentioned here that similar to 2D FSFE, the
frequency-dependent wave characteristics corresponding to each
lateral �Y� wave number, can be extracted directly from the
present 2D WSFE formulation. However, unlike FSFE, the wave
numbers will be accurate only up to a certain fraction of Nyquist
frequency �5�.

2 Daubechies Compactly Supported Wavelets
In this section, a concise review of orthogonal basis of

Daubechies wavelets �2� is provided. Wavelets � j,k�t� forms a
compactly supported orthonormal basis for L2�R�. The wavelets
and associated scaling functions � j,k�t� are obtained by translation
and dilation of single functions ��t� and ��t�, respectively,

� j,k�t� = 2 j/2��2 jt − k�, j, k � Z �1�

� j,k�t� = 2 j/2��2 jt − k�, j, k � Z �2�

The scaling functions ��t� are derived from the dilation or scaling
equation,
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��t� = �
k

ak��2t − k� �3�

and the wavelet function ��t� is obtained as

��t� = �
k

�− 1�ka1−k��2t − k� �4�

ak are the filter coefficients, which are fixed for a specific wavelet
or scaling function basis. For compactly supported wavelets, only
a finite number of ak are nonzero. The filter coefficients ak are
derived by imposing certain constraints on the scaling functions.

Let Pj�f��t� be the approximation of a function f�t� in L2�R�
using � j,k�t� as the basis, at a certain level �resolution� j, then

Pj�f��t� = �
k

cj,k� j,k�t�, k � Z �5�

where cj,k are the approximation coefficients.

3 Reduction of Wave Equations to ODEs

3.1 Governing Differential Equations. Using classical lami-
nated plate theory �CLPT� �6�, the three governing equations with
respect to the three degrees of freedom u0, v0, and w are given
below. Here, u0�x ,y , t�, v0�x ,y , t�, and w�x ,y , t� are the axial and
transverse displacements in x, y and z directions, respectively,
along the midplane, which is at z=0

A11�
2u0

�x2 +
�A12 + A66��2v0

�x � y
+

A66�
2u0

�y2 −
B11�

3w

�y3 −
�B12 + 2B66��3w

�x � y2

= I0ü0 �6�

A66�
2v0

�x2 +
�A12 + A66��2u0

�x � y
+

A22�
2v0

�y2 −
�B12 + 2B66� � w3

�x2 � y

−
B22 � w3

�y3 = I0v̈0 �7�

B11�
3u0

�x3 +
�B12 + 2B66��3u0

�x2 � y
+

�B12 + 2B66��3v0

�x � y2 +
B11�

3v0

�x3

−
D11�

4w

�x4 −
2�D12 + 2D66��4w

�x2 � y2 −
D22�

4w

�y4

= I0ẅ − I2� �2ẅ

�x2 +
�2ẅ

�y2 � �8�

The stiffness coefficients Aij, Bij, Dij and the inertial coefficients
I0, I2 are defined as

�Aij,Bij,Dij� =�
A

Qij�1,z,z2�dA �I0,I2� =�
A

��1,z2�dA

where Qij is the stiffness constant of the lamina and � is the mass
density. The associated boundary conditions for edges parallel to
Y-axis are

Nx =
A11 � u0

�x
+

A12 � v0

�y
−

B11�
2w

�x2 −
B12�

2w

�y2 �9�

Ny = A66� �u0

�y
+

�v0

�x
� −

2B66�
2w

�x � y
�10�

My = −
B11 � u0

�x
−

B12 � v0

�y
+

D11�
2w

�x2 +
D12�

2w

�y2 �11�

V =
B11�

2u0

�x2 +
B12�

2v0

�x � y
−

D11�
3w

�x3 −
D12�

3w

�x � y2 +
I2 � ẅ

�x
�12�

where Nx and Ny are the normal forces in x and y direction, re-
spectively. My and Mx are the moments about x- and y-axis. The
shear resultant or the Kirchoff shear �1� V is obtained as

V = Q −
�Mxy

�y
�13�

where Q is the transverse shear force in the z direction. Next,
governing PDEs and the associated boundary conditions derived
here are reduced to a set of ODEs using Daubechies scaling func-
tion approximation in time and one spatial �Y� dimension.

3.2 Temporal Approximation. The first step in the formula-
tion of the 2D WSFE is the reduction of each of the three govern-
ing differential equations given by Eqs. �6�–�8� to a set of PDEs
by Daubechies scaling function-based transformation in time. The
procedure is exactly similar to that in the formulation of the 1D
WSFE �4�. However, the key steps are stated here very briefly for
completeness. Let u0�x ,y , t� be discretized at n points in the time
window �0tf�. Let �=0,1 , . . . ,n−1 be the sampling points, then

t = � t� �14�

where �t is the time interval between two sampling points. The
function u0�x ,y , t� can be approximated by scaling function ����
at an arbitrary scale as

u0�x,y,t� = u0�x,y,�� = �
k

u0k�x,y���� − k�, k � Z �15�

where u0k�x ,y� �referred as u0k hereafter� are the approximation
coefficients at a certain spatial dimension x and y. The other dis-
placements v0�x ,y , t� ,w�x ,y , t� can be transformed similarly. Sub-
stituting these approximations in Eq. �6�, using the orthogonality
property of the translates of the scaling functions and the defini-
tion of connection coefficients �7�, the transformed coupled PDEs
obtained are of the form

A11	 �2u0j

�x2 
 + �A12 + A66�	 �2v0j

�x � y

 + A66	 �2u0j

�y2 
 − B11	 �3wj

�x3 

− �B12 + 2B66�	 �3wj

�x � y2
 = ��1�2I0�u0j� �16�

where �1 is the first-order connection coefficient matrix obtained
after using the wavelet extrapolation technique �3�. These coupled
PDEs are decoupled using eigenvalue analysis of �1 as given in
Ref. �4�. The final decoupled form of the reduced PDEs given in
Eq. �16� is

A11
�2û0j

�x2 + �A12 + A66�
�2v̂0j

�x � y
+ A66

�2û0j

�y2 − B11
�3ŵj

�x3

− �B12 + 2B66�
�3ŵj

�x � y2 = − I0� j
2û0j j = 0,1, . . . ,n − 1

�17�

where û0j and similarly other transformed displacements are

û0j = �−1u0j �18�

where � is the eigenvector matrix of �1 and ı� j are the corre-
sponding eigenvalues. Following exactly similar steps, the two
other governing differential equations �Eqs. �7� and �8�� and the
force boundary conditions �Eqs. �9�–�12�� are transformed to
PDEs in x and y.

It should be mentioned here that the sampling rate �t should be
less than a certain value to avoid spurious dispersion in the simu-
lation using WSFE. In Ref. �5�, a numerical study has been pre-
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sented from which the required �t can be determined depending
on the order N of the Daubechies scaling function and frequency
content of the load.

3.3 Spatial „Y… Approximation. As said in Sec. 1, the next
step involved is to further reduce each of the transformed and
decoupled PDEs given by Eq. �17� �similarly for the other trans-
formed governing differential equations corresponding to �7� and
�8�� for j=0,1 , . . . ,n−1 to a set of coupled ODEs using
Daubechies scaling function approximation in one of the spatial
�Y� direction. Similar to time approximation, the transformed vari-
able û0j be discretized at m points in the spatial window �0,LY�,
where LY is the length in Y direction. Let �=0,1 , . . . ,m−1 be the
sampling points, then

y = � Y� �19�

where �Y is the spatial interval between two sampling points.
The function û0j�x ,y� can be approximated by scaling function
���� at an arbitrary scale as

û0j�x,y� = û0j�x,�� = �
k

û0lj�x���� − l�, l � Z �20�

where û0lj�x ,y� �referred as û0lj hereafter� are the approximation
coefficients at a certain spatial dimension x. The other displace-
ments v̂0j�x ,y� , ŵj�x ,y� can be similarly transformed. Following
similar steps as the time approximation, substituting the above
approximations in Eq. �17� and taking inner product on both sides
with the translates of scaling functions ���− i�, where i
=0,1 , . . . ,m−1 and using their orthogonal properties, we get m
simultaneous ODEs as follows:

A11
d2û0ij

dx2 + �A12 + A66�
1

�Y �
l=i−N+2

i+N−2
dv̂0lj

dx
	i−l

1

+ A66
1

�Y2 �
l=i−N+2

i+N−2

û0lj	i−l
2 − B11

d3ŵij

dx3 − �B12 + 2B66�



1

�Y2 �
l=i−N+2

i+N−2
dŵlj

dx
	i−l

2 = − I0� j
2û0ij i = 0,1, . . . ,m − 1

�21�

where N is the order of Daubechies wavelet and 	i−l
1 and 	i−l

2 are
the connection coefficients for first- and second-order derivative
defined in Ref. �7�.

It can be seen from the ODEs given by Eq. �21�, that, similar to
time approximation, here also certain coefficients û0ij near the
vicinity of the boundaries �i=0 and i=m−1� lie outside the spatial
window �0LY� defined by i=0,1 , . . . ,m−1. These coefficients
must be treated properly for finite domain analysis. However,
here, unlike time approximation, these coefficients are obtained
through periodic extension, but only for free lateral edges, while
other boundary conditions may be imposed quite differently using
a restraint matrix �8�. The unrestrained, i.e., free-free boundary
conditions may also be imposed in a similar way using a restraint
matrix, but interestingly, it has been seen from the numerical ex-
periments that the use of periodic extension gives accurate results.
In addition, it allows decoupling of the ODEs using eigenvalue
analysis and thus reduces the computational cost. Here, after ex-
pressing the unknown coefficients lying outside the finite domain
in terms of the inner coefficients considering periodic extension,
the ODEs given by Eq. �21� can be written as a matrix equation of
the form

A11	d2û0ij

dx2 
 + �A12 + A66���1�	dv̂0ij

dx

 + A66��1�2�û0lj�

= − B11	d3ŵij

dx3 
 − �B12 + 2B66���1�2	dŵlj

dx

 − I0� j

2�û0ij�

�22�

where �1 is the first-order connection coefficient matrix obtained
after periodic extension. The coupled ODEs given by Eq. �22� are
decoupled using eigenvalue analysis similar to that done in time
approximation. It should be mentioned here that matrix �1 ob-
tained after periodic extension has a circulant form and its eigen-
parameters are known analytically �9�. Let the eigenvalues be ı�i,
then the decoupled ODEs corresponding to Eqs. �22� are

A11
d2ũ0ij

dx2 − ı �i�A12 + A66�
dṽ0ij

dx
− �i

2A66ũ0ij − B11
d3w̃ij

dx3

+ �i
2�B12 + 2B66�

dw̃ij

dx
= − I0� j

2ũ0ij i = 0,1, . . . ,m − 1

�23�

where ũ0j and similarly other transformed displacements are

ũ0j = 
−1û0j �24�

where 
 is the eigenvector matrix of �1.
Following exactly similar steps, the final transformed and de-

coupled form of the Eqs. �7� and �8� �following reduction using
temporal approximation� are

A66
d2ṽ0ij

dx2 − ı �i�A12 + A66�
dũ0ij

dx
− �i

2A22ṽ0ij

+ ı �i�B12 + 2B66�
d2w̃ij

dx2 − ı �i
3B22w̃ij = − I0� j

2ṽ0ij �25�

B11
d3ũ0ij

dx3 − �i
2�B12 + 2B66�

dũ0ij

dx
− ı �i�B12 + 2B66�

d2ṽ0ij

dx2

+ ı �i
3B22ṽ0ij − D11

d4w̃ij

dx4 + 2�i
2�D12 + 2D66�

d2w̃ij

dx2 − �i
4D22w̃ij

= − I0� j
2w̃ij + I2� j

2�d2w̃ij

dx2 − �i
2w̃ij� �26�

Similarly, the transformed form of the force boundary conditions
given by Eqs. �9�–�12� �following reduction using temporal ap-
proximation� are

A11
dũ0ij

dx
− ı �iA12ṽ0ij − B11

d2w̃ij

dx2 + �i
2�B12 + 2B66�w̃ij = Ñxij

�27�

A66�− ı �iũ0ij +
dṽ0ij

dx
� + 2 ı �iB66

dw̃ij

dx
= Ñyij �28�

− B11
dũ0ij

dx
+ ı �iB12ṽ0ij + D11

d2w̃ij

dx2 − �i
2D12w̃ij = M̃yij �29�

B11
d2ũ0ij

dx2 − ı �iB12
dṽ0ij

dx
− D11

d3w̃ij

dx3 + �i
2D12

d2w̃ij

dx2 − I2� j
2dw̃ij

dx

= Ṽij i = 0,1, . . . ,m − 1 �30�

The final transformed ODEs given by Eqs. �23�, �25�, and �26�
and the boundary conditions Eqs. �28�–�30� are used for 2D
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WSFE formulation similar to the 2D FSFE technique �1�.
Similar to the temporal approximation, the spatial sampling rate

�Y is also determined from the order N of the scaling function
used for spatial approximation and the spatial distribution of the
load.

The four degrees of freedom per node associated with the ele-
ment formulation are ũ0ij , ṽ0ij , w̃ij, and �w̃ij /�x. The correspond-

ing nodal forces are Ñxij, Ñyij, M̃yij and Ṽij. From the previous
sections, for unrestrained lateral edges we get a set of decoupled
ODEs �Eqs. �23�, �25�, and �26�� for an isotopic plate using CLPT,
in a transformed wavelet domain. These equations are required to
be solved for ũ0ij, ṽ0ijw̃0ij, and the actual solutions u0�x ,y , t�,
v0�x ,y , t�, w�x ,y , t� are obtained using inverse wavelet transform
twice for spatial Y dimension and time.

It can be seen that the transformed decoupled ODEs have a
form that is similar to that in FSFE �1�, and thus, the formulation
of WSFE from here is similar to FSFE formulation or 1-D WSFE
formulation given in Ref. �4�. Thus, the formulation is not re-
peated here. Finally, the transformed nodal forces �F̃e� and trans-
formed nodal displacements �ũe� are related as

�F̃e� = �K̃e��ũe� �31�

where �K̃e� is the exact elemental dynamic stiffness matrix. The
solution of the Eq. �31� and the assembly of the elemental stiff-
ness matrices to obtain the global stiffness matrix is exactly simi-
lar to conventional FE technique.

4 Numerical Experiments
Here, the formulated 2D WSFE is used to study axial and trans-

verse wave propagation in composite graphite-epoxy AS/3501
plates of different configurations and ply orientations. The analy-
sis results are presented in both time and frequency domains. The
responses simulated using the formulated element is first validated
with 2D FE analysis. In addition, comparisons to corresponding
responses obtained using FSFE are also provided. This highlights
the advantages of WSFE over FSFE in modeling 2D structures
with finite dimensions. The example used �shown in Fig. 1� con-
sist of uniform cantilever plate. The material properties are as
follows, E1=144.48 GPa, E2=E3=9.63 GPa, G23=G13=G12
=4.128 GPa, �23=0.3, �13=�12=0.02, and �=1389 kg /m3.

In all the examples provided, the load applied is a unit impulse
of time duration 50 �s and occurs between 100 and 150 �s, with
frequency content 44 kHz. The load is applied at the edge along
the Y-axis and has a spatial distribution of

F�Y� = e−�Y/��2
�32�

where � is a constant and can be varied to change the Y-axis
variation of the load.

The 2D WSFE model is formulated with the Daubechies scal-
ing function of order N=22 for temporal approximation and N
=4 for spatial approximation. The time sampling rate is �t
=2 �s, unless otherwise mentioned, while the spatial sampling
rate �Y is varied depending on LY and load distribution F�y�.

The uniform cantilever plate shown in Fig. 1 is fixed at one
edge �CD� and free at the other edge AB along Y-axis. Numerical
experiments are performed by considering the other two edges
�AC� and �BD� along X-axis to be free-free. The dimensions are
LX and LY along X and Y axis, respectively, while the depth �
=2h� is kept fixed at 0.01 m with eight laminates.

4.1 Spectrum Relations. The spectrum relation for the plate
with LY =0.25 m and asymmetric ply lay up of �04 /904� are plot-
ted in Fig. 2. Figures 2�a� and 2�b� respectively show the real and
imaginary parts of the wave numbers for a Y wave number of 50.
It can be seen that the wave number has significant real and imagi-
nary parts. This implies that the waves are inhomogeneous in
nature, i.e., it attenuates as it propagates. The wave numbers have
been obtained with �t=4 �s, i.e, for a Nyquist frequency of
fnyq=125 kHz. As said earlier �5�, WSFE predicts accurate wave
numbers only up to a certain fraction pN of Nyquist frequency
fnyq. This fraction pN for N=22 is 
0.6. Thus in Figs. 2�a� and
2�b�, the wave numbers are plotted up to a frequency fN= pNfnyq
=75 kHz. There are three cutoff frequencies, which vary with the
wave number.

Fig. 1 Uniform cantilever plate

Fig. 2 The „a… real and „b… imaginary parts of the wave number
of a plate with asymmetric ply layup of †04/904‡

014504-4 / Vol. 75, JANUARY 2008 Transactions of the ASME

Downloaded 04 May 2010 to 171.66.16.43. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



4.2 Response Analysis. Next, the time domain responses of a
plate with LX=0.5 m, LY =0.25 m and asymmetric ply orientation
of �04 /904�, simulated using the WSFE method are validated with
2D FE results. In Figs. 3�a� and 3�b�, respectively, the axial and
transverse velocities measured at the midpoint of edge AB �see
Fig. 1� of the cantilever plate are plotted and compared to 2D FE
results. The impulse loads are applied along AB correspondingly
in axial and transverse directions. The Y variation of the load is
obtained using �=0.03 in Eq. �32�. As mentioned earlier, only one
WSFE is used to model the structure and the time window is kept
to Tw=512 �s. The number of discretization points along Y-axis
is m=64, and thus, the spatial sampling rate is �Y =LY / �m−1�
=0.004 m. A very refined mesh with 6432 four-noded plane stress
quadrilateral elements were used for the 2D FE analysis, while
Newmark’s scheme with time step 1 �s was used for time inte-
gration. It can be seen that WSFE and FE results match very well.
A comparison is also provided to FSFE results. As stated earlier, it
can be seen from these results that unlike WSFE, FSFE is unable
to accurately capture the reflections from the lateral edges AC and
BD in this example. The velocities obtained from FSFE modeling
show only the reflection from the fixed edge CD. Thus, for struc-
tures with finite or short dimensions, FSFE results will deviate
substantially from the actual responses. In addition, simulation
with FSFE requires a “throw-off”element to impart artificial
damping to the structure and a large time window Tw

=16,384 �s to remove the distortions due to the wraparound
problem. It should be restated here that the accuracy of the re-
sponse simulated using WSFE is independent of the time window
Tw, which is chosen, as required, for observation.

Figures 4�a� and 4�b� show the snapshots of the axial and trans-
verse velocities of the cantilever plate shown in Fig. 1 with a
symmetric ply orientation of �08� at time instances T=250 �s and
T=1000 �s, respectively. The plate dimensions are LX=2.0 m and
LY =0.5 m, and is modeled using a single WSFE with m=64 sam-
pling points in the Y direction. The impulse load as explained
earlier is applied along edge AB in the axial and transverse direc-
tions, and the Y variation is obtained with �=0.05. The snapshot
at T=250 �s �Fig. 4�a�� shows the forward-moving axial wave.
Similarly, Fig. 4�b� shows the forward-moving transverse waves,
which are dissipative in nature. It should be mentioned here that
the velocities at all the sampling points along Y direction and at
any points along X direction used to obtain the snapshots are
obtained from a single simulation.

5 Conclusions
In this paper, a 2D wavelet-based spectral finite element is for-

mulated to study wave propagation in an anisotropic plate. The
spectral finite element method is an efficient alternative to FE
analysis and decreases the computational cost substantially. The
present wavelet-based technique circumvents several major limi-
tations of the conventional FFT based spectral finite element
method, while retaining the advantages of low computational cost
and simultaneous time and frequency-domain analysis. The local-

Fig. 3 „a… Axial and „b… transverse velocities at midpoint of
edge AB in a †04/904‡ cantilever plate „see Fig. 1… with LX
=0.5 m and LY=0.25 m due to tip impulse load applied in axial
and transverse directions along AB, respectively

Fig. 4 Snapshots of „a… axial velocities at time instance T
=250 �s and „b… transverse velocities at time instance T
=1000 �s in a †0‡8 cantilever plate „see Fig. 1… with LX=2.0 m
and LY=0.5 m due to tip impulse load applied in axial direction
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ized nature of the Daubechies basis functions for the WSFE
method allows modeling of plate structures with finite dimen-
sions, which is otherwise not possible with the corresponding
FFT-based method. In addition, 2D WSFE is also free from the
wraparound problem associated with FSFE due to the assumption
of periodicity in the time approximation. As a result of FSFE,
unlike WSFE, we cannot model undamped finite length structures
and, even in the presence of damping, a larger time window is
needed to remove the distortions arising from wraparound.

First, the responses simulated using the formulated WSFE is
validated with 2D FE results. Comparisons to the corresponding
FSFE simulations are also provided to emphasize the advantages
of WSFE over FSFE, particularly for analyzing structures with
finite/short dimensions. Numerical experiments are performed to
study wave propagation in plates with different asymmetric ply
layup in both the time and frequency domains.
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A simple formula to study the large amplitude free vibration be-
havior of structural members, such as beams and plates, is devel-
oped. The nonlinearity considered is of von Karman type, and
after eliminating the space variable(s), the corresponding tempo-
ral equation is a homogeneous Duffing equation. The simple for-
mula uses the tension(s) developed in the structural members due
to large deflections along with the corresponding buckling load
obtained when the structural members are subjected to the end
axial or edge compressive load(s) and are equal in magnitude of
the tension(s). The ratios of the nonlinear to the linear radian
frequencies for beams and the nonlinear to linear time periods for
plates are obtained as a function of the maximum amplitude ratio.
The numerical results, for the first mode of free vibration obtained
from the present simple formula compare very well to those avail-
able in the literature obtained by applying the standard analytical
or numerical methods with relatively complex formulations.
�DOI: 10.1115/1.2755147�

Keywords: free vibrations, geometric nonlinearity, beams, plates

1 Introduction
Evaluation of the large amplitude free vibrations of basic struc-

tural members, such as beams, plates, and shells, is essential for
studying the behavior of the present-day highly optimized and
cost-effective structural members subjected to a severe dynamic
environment. The basic study involved is to find the variation of
the frequency or time period of vibration, for a given mode, with
respect to a given maximum amplitude ratio. Based on this infor-
mation, further investigations on the dynamic behavior of these
structural elements can follow. This paper covers the study of the

large amplitude free vibrations of uniform slender beams and thin
plates made of isotropic materials, henceforth referred as beams
and plates.

The classic work on the topic of large amplitude free vibrations
of hinged-hinged beams �called as bars in the paper� is initially
due to Woinowsky-Krieger �1�. This formulation basically takes
the nonlinearity involved in the strain-displacement relation �von
Karman type� and is taken into account by evaluating the constant
axial tension, developed because of the large deflections with the
axially immovable end conditions. This tension term, when in-
cluded in the dynamic equation of equilibrium, becomes a homog-
enous Duffing equation of the hardening type, and the solution is
obtained in terms of the elliptic integrals, with an assumed space
mode for the beams. Extensive studies by other researchers on the
large amplitude free vibration of beams by using either continuum
methods or a numerical method, such as the versatile finite ele-
ment method, considering the axially immovable end conditions
of the beam �henceforth called beams with immovable ends�, with
some simplifying assumptions on the axial displacements, linear-
ization of the strain-displacement relations, treating that the non-
linear vibrations also exhibit simple harmonic motion �SHM�, etc.
A detailed study on the effect of these assumptions on the large
amplitude vibrations of hinged-hinged beams is presented by
Singh et al. �2�. Marur �3� has systematically classified the various
formulations on the large amplitude free vibrations of beams. Ex-
cellent review articles by Sathyamoorthy �4,5� give the develop-
ments that took place on the nonlinear analysis of beams up to the
1980 and an exhaustive presentation of the developments in the
area of nonlinear analysis of structural members until recently �6�.

For the plates, the large amplitude free vibration problem be-
comes a cubic nonlinear one of hardening type, with the edges
immovable in the normal direction in the plane of the plates
�henceforth called plates with immovable edges�, either by using
the approach of Woinowsky-Krieger �1,7� or the stress function
approach �8�, and the corresponding results are given in a system-
atic way by Leissa �9�. These formulations, whether continuum or
finite element based, are relatively complex in nature and are not
easily amenable for obtaining simple, accurate, and reliable
closed-form solutions.

It is the endeavor of the first author to develop simple and, at
the same time, accurate and reliable solutions to some complex
problems of practical interest in structural mechanics, and he suc-
cessfully developed simple formulas for predicting the fundamen-
tal frequency parameter of the initially loaded �stressed� structural
members �10–13� and their thermal post-buckling behavior
�14–16�.

With the same spirit and following the earlier work �10–13�, the
authors have successfully developed a simple formulation for
studying the large amplitude free vibration behavior of structural
members with immovable ends or edges, for beams and plates,
respectively, where the nonlinearity exists in the strain-
displacement relation�s� of von Karman type, which yields a ho-
mogenous cubic nonlinear temporal equation �homogeneous Duf-
fing equation� with an assumed space mode. It is emphasized here
that the formula is developed based on the knowledge of the two
totally unrelated quantities to the free vibrations, such as the ten-
sile load�s� developed in these structural members due to the large
deflections and the corresponding buckling loads that are obtained
from the same pattern of compressive load�s� as the tensile
load�s�, where “s” in the parentheses is applicable for rectangular
plates representing the two biaxial tensile loads that exist in the
directions of the 2D rectangular Cartesian frame.

Numerical results, obtained using the simple formula, for the
large amplitude free vibrations of typical immovable beams and
plates are presented for the first mode of free vibration. The
present numerical results compare very well to those available in
the literature, indicating that the present simple formula developed
based on the physical concepts of the problem and the subsequent
logical deductions with much less mathematical treatment is
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highly promising to obtain accurate, reliable, and a quick solution
for the cubic nonlinear homogeneous temporal equations that are
often encountered in the nonlinear structural mechanics.

2 Simple Formula
The frequency parameter of the beams and plates with initial

axial or inplane loads, based on the earlier work �10–13�, is given
by

� f

� fo

±
�i

�b
= 1 �1�

where � f and � fo
are the frequency parameters of the initially

loaded and without initial load, �i and �b are the initial load and
the buckling load parameters of the structural members, respec-
tively. It is to be noted here that both � f, � fo or �i and �b are the
nondimensional parameters that are obtained directly from the
nondimensional differential or matrix equations. In Eq. �1�, the
positive and negative signs represent the compressive or tensile
initial loads, respectively.

The condition involved in deriving this formula is that the mode
shapes of the load free vibration, initial loaded vibration and the
buckling are the same for any given mode. In actual practice, it is
difficult to satisfy this condition, except for hinged-hinged beams
and rectangular plates with simply supported edges, and is ap-
proximately satisfied. Thus, a small error exists in predicting the
initially loaded frequency parameter and the magnitude of the
error depends on how accurately this condition is satisfied. How-
ever, in the case of the use of single-term mode shapes in the
analysis, this condition is exactly satisfied and the predicted ini-
tially loaded frequency parameter using Eq. �1� is exactly the
same as the one evaluated using rigorous continuum or numerical
analysis performed using the same single-term mode shapes.
These can also be called single-term admissible functions.

The main theme of this note is to transform Eq. �1� to represent
the problem of large amplitude free vibrations of structural mem-
bers. It has already been mentioned earlier that the structural
members develop tensile load�s� during large deflections and these
load�s� are treated as initial loads in developing the present simple
formula. However, these are functions of maximum amplitude ra-
tios as the initial load�s� are dependent on the same for a given
mode of vibration.

In the context of large amplitude free vibrations, �i can be
replaced by �T, the initial tensile load parameter, � f is the nonlin-
ear frequency parameter �NL because of the initial load developed
due to large deflections and � fo

is the linear frequency parameter
�L without the initial load. Equation �1� can now be written with
the negative sign because of the tensile initial loads, as

�NL

�L
= 1 +

�T

�b
�2�

As Eq. �1� is derived using the assumption of SHM, �NL ob-
tained with this assumption is approximate. Hence, following the
harmonic balance method �HBM� �17�, Eq. �2� is corrected using
a correction factor �18�, to compensate the assumption of SHM
for obtaining �NL. The correction factor of 3 /4 is obtained by
solving the homogeneous Duffing equation with and without the
assumption of SHM and comparing both the solutions. Equation
�2� is now written as

�NL

�L
=

�NL
2

�L
2 = 1 +

3

4

�T

�b
�3�

The effectiveness of this simple formula is demonstrated
through typical large amplitude free vibration problems of beams
and plates.

3 Expressions for Tensile Load Parameters
The expressions for the tensile loads, from which the tensile

load parameters are defined, developed because of large deflec-
tions are taken from Woinowsky-Krieger �1�, Leissa �9�, and Rao
and Raju �15�. These are

TX =
EI

2Lr2�
0

L �dw

dx
�2

dx �4�

TR =
12D

a2h2�
0

a �dw

dr
�2

RdR �5�

TX =
Eh

2A�0

A �dw�x�
dx

	2

dx �6�

in the x direction and

TY =
Eh

2B�0

B �d�w�y��
dy

	2

dy �7�

in the y direction, for the beams, circular plates with axisymmetric
deformations, and rectangular plates respectively, where r is the
radius of gyration for beams, h is the thickness for plates is the
length of the beam, a is the radius of the circular plate, R is the
radius of the circular plate, A and B are the lengths of the plates in
the x and y directions, and w is the assumed transverse displace-
ment distributions for the three structural members considered.
These tensile loads are dependent on the maximum amplitude
ratios �b /r�2 in the case of the beams and �b /h�2 in the case of the
plates, where b is the maxim amplitude of the large amplitude free
vibration and are constant for a given b /r or b /h.

The initial tensile load parameter due to the large deflections for
beams is defined as TXL2 /EI. For the circular plate, with the axi-
symmetric large deflections, the tensile load parameter is defined
as TRa2 /D. And for the rectangular plate, the tensile load param-
eters are defined TXA2 /�2D or TYB2 /�2D, where Tx and Ty are
the uniform tensile initial loads per unit length developed in the
plate due to large deflections. The corresponding buckling load
parameters �b are obtained using the same type of compressive
load system�s� similar to the tensile loads generated. In the study
of the rectangular plates, the magnitudes of the compressive load-
ing system has to be taken such that NY /NX=TY /TX, where NX
and NY are the biaxial compressive loads per unit length in x and
y directions acting on the plate.

4 Numerical Results
The proposed simple formula for predicting the large amplitude

free vibrations for the first mode is verified through some typical
beam and plate problems using the standard single-term admis-
sible functions for the space mode. As the numerical results
�NL /�L for beams and TNL /TL for plates are given in terms of the
maximum amplitude ratios, it is necessary to normalize the admis-
sible functions for the transverse displacements chosen with a
factor called the normalizing factor, so that the maximum value of
the transverse displacement becomes unity. These admissible
functions applicable for the first mode of vibration are given in
Table 1 along with the normalizing factors, tension, and buckling
load parameters obtained by using these admissible functions. It
can be seen that the buckling load parameters match very well
with the classical solutions �19�.

The variation of �NL /�L obtained from the present simple for-
mula with various values of b /r are presented in Table 2 along
with those obtained through the elliptic integral of solution �1,20�,
solutions obtained through direct numerical integration �DNI� us-
ing both finite element �FE� and the continuum analyses �21,22�
for the hinged-hinged beam. For the clamped-clamped beams the
elliptic integral solution is not readily available and hence the
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present results are compared with those obtained by using the DNI
�21,22�. The results obtained by using the HBM �18� are included
in Table 2 for the limiting case of slender beams. In any case, the
present results match excellently with those obtained through the
other solutions. Because the problem of axisymmetric free vibra-
tion behavior of circular plates is also a one-dimensional problem,
such as beams, and for the sake of brevity, a detailed discussion of
the same is not given in this note. However, for b /h=1, the values
of TNL /TL obtained from the simple formula for the simply sup-
ported and clamped circular plates are 0.6092 and 0.8595 and
match well with the values of 0.6154 and 0.8488 �7,23�, respec-
tively.

To conclusively verify the present simple formula, the rectan-
gular simply supported plate of aspect ratio 2 is considered and

the numerical results in the form of TNL /TL are present in Table 3.
The present results compare well to those of Rao et al. �24�, and
the consistency of the present simple formula is verified in the
case of clamped rectangular plates with the aspect ratios 0.5 and
2.0. These two plates are similar and the present results in terms
of TNL /TL obtained using the tension parameter and buckling load
parameter with proper nondimensionalization should be the same;
this is seen in Table 3. For clamped square plates, the present
results agree excellently with those given in Ref. �6�.

5 Conclusions
The efficacy of the developed simple formula for studying the

large amplitude free vibrations of structural members with cubic

Table 1 Transverse displacement field, normalizing factor, tension, and buckling load parameters for beams, circular, and rect-
angular plates

Sl. No. Boundary conditions
Transverse displacement field

w
Normalizing

factor
Tension parameter

�T

Buckling load
parameter �b

1 Hinged-hinged Beam b sin �x / L 1 ��2 /4��b /r�2 �2

2 Clamped-clamped Beam b�1−cos 2�x / L � 2 ��2 /4��b /r�2 4�2

3 Simply supported circular plate b
��4+v� /2�1+v��a3− ��6+3v� /2�1+v��aR2+R3� 1.6539a3 9.5358 �b /h�2 4.2201
4 Clamped circular plate b�R3− �3 /2�aR2+ �1 /2�a3� 0.5a3 �36 /5��b /h�2 14.998
5 Rectangular plate - all edges

simply supported �A/B�2�
b sin �x / A sin �y / B 1 3�1−�2��b /h�2 1.4706

6 Rectangular plate - all edges
clamped �A/B�0.5�

b�1−cos�2�x /A���1−cos�2�y /B�� 4 3�1−�2��b /h�2 4.6275

7 Rectangular plate - all edges
clamped �A/B�2�

b�1−cos�2�x /A���1−cos�2�y /B�� 4 3�1−�2��b /h�2 4.6275

8 Rectangular plate - all edges
clamped �A/B�1�

b�1−cos�2�x /A���1−cos�2�y /B�� 4 3�1−�2��b /h�2 5.3333

Table 2 Variation of �NL /�L with maximum amplitude ratio for beams

Hinged-hinged Clamped-clamped

DNI DNI

b /r
Present
study

Refined
results of �1�
taken from

�20�
FEM
�21�

Continuum
�22�

HBM
�17,18�

Present
study

FEM
�21�

Continuum
�18�

HBM
�17,18�

0.0 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
0.2 1.0037 1.0037 1.0037 1.0037 1.0037 1.0009 1.0009 1.0009 -
0.4 1.0149 1.0149 1.0148 1.0149 1.0149 1.0037 1.0036 1.0037 -
0.6 1.0332 1.0331 1.0331 1.0331 1.0332 1.0084 1.0080 1.0084 -
0.8 1.0583 1.0580 1.0581 1.0580 1.0583 1.0149 1.0142 1.0149 -
1.0 1.0897 1.0892 1.0892 1.0892 1.0897 1.0232 1.0221 1.0231 1.0232
2.0 1.3229 1.3178 1.3178 1.3178 1.3229 1.0897 1.0854 1.0892 1.0897
3.0 1.6394 1.6257 1.6257 1.6257 1.6394 1.1924 1.1825 1.1902 1.1924
4.0 2.0000 1.9760 1.9761 1.9760 2.0000 1.3229 1.3055 1.3178 1.3229
5.0 2.3848 2.3501 2.3502 2.3501 2.3848 1.4737 1.4474 1.4647 1.4737

Table 3 Variation of TNL /TL with maximum amplitude ratio for rectangular plates

All edges simply
supported �A /B=2.0� All edges clamped

A /B=0.5 A /B=2.0 A /B=1.0

b

h Present study
Rao et al.

�24�
Present
study

Present
study

Present
study Sathyamoorthy �6�

0.0 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
0.2 0.9733 0.9767 - - - -
0.4 0.9043 0.9159 - - - -
0.5 - - 0.9489 0.9489 0.9552 0.9559
0.6 0.8162 0.8363 - - - -
0.8 0.7272 0.7539 - - - -
1.0 0.6465 0.6776 0.8326 0.8326 0.8501 0.8508
1.5 - - 0.7079 0.7079 0.7325 0.7315
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nonlinear temporal equation, such as beams, circular, and rectan-
gular plates, has been conclusively demonstrated in this paper
through some typical problems. The authors are of the opinion
that the present simple formula, because of the accuracy and the
consistency of the numerical results obtained, attracts both ana-
lysts and researchers belonging to the basic engineering analysis
and research. However, a similar simple formula should to be
developed for structural members that exhibit the quadratic non-
linearity also in the cubic nonlinear temporal equation. Further-
more, the large amplitude free vibration behavior for the higher
modes of vibration can be studied by using the single-term admis-
sible functions corresponding to the required mode of free vibra-
tion.
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This study examines the effects of rarefaction of an unsteady flow
through a microtube for a given but arbitrary inlet volume flow
rate. Four cases of inlet volume flow rate proposed by Das and
Arakeri (2000, ASME J. Appl. Mech., 67, pp. 274–281) are as
follows: (1) trapezoidal piston motion, (2) constant acceleration,
(3) impulsively started flow, and (4) impulsively blocked fully de-
veloped flow. During the analysis process, the Knudsen number
(Kn) is used to represent the degree of rarefaction. The analytical
results are presented graphically and compared to the results for a
continuum under a no-slip condition. The effect of wall-slip be-
came significant with the increasing degrees of rarefaction. The
velocity in the boundary layer increased, whereas the velocity in
the potential core of the microtube decreased, under the same
condition. The influence of the rarefaction for the pressure gradi-
ent varied for the four cases. �DOI: 10.1115/1.2755085�

Keywords: microfluidics, slip-flow, unsteady flow, Knudsen num-
ber

1 Introduction
Microsystems, one of the most significant technologies devel-

oped in the 21st century, are widely used in the fields of engineer-
ing, the sciences, and medicine for applications such as micro-
wave communication, biological technology, optocommunication,
automation, sensors, semiconductors, etc. Microfluidics, the pri-
mary technology in microsystems, is the principal focus in this
study.

Rarefaction phenomena should be considered when fluid flows
in a microtube, as compared to macroscale flow. The degree of the
rarefaction can be identified by the Knudsen number �Kn�, which
is a ratio of magnitude of the average mean free molecular path to

the characteristic dimension in a flow field. Classification of flow
fields by Knudsen number can be divided into the following four
regimes �1�: Kn�10−3, continuum flow; 10−3�Kn�10−1, slip-
flow; 10−1�Kn�10, transition flow; and 10�Kn, free molecular
flow. When slip-flow occurs, the fluid adjacent to the wall surface
no longer attains the velocity of the wall surface, and it slips along
the wall surface �2�.

In the literature, considerable work deals with the internal mac-
roscale flow, in which a no-slip condition is incorporated. Some
researchers solve for exact solutions for laminar flows in a duct
with a given pressure gradient varying over time; for example,
Szymanski �3� and Uchida �4� presented solutions for an impul-
sively imposed and sinusoidally varying pressure gradient. For the
more complex case of a Maxwell fluid, Rahaman and Ramkissoon
�5� provided solutions for a pressure gradient varying exponen-
tially over time, a sinusoidal pulsating pressure gradient, and a
constant pressure gradient. Hayat et al. �6� solved exact solutions
to some simple flows of an Oldroyd-B fluid between two parallel
plates with and without pressure gradients.

In practice, it is generally the inlet volume flow rate that is
given, rather than the pressure gradient. For a power law fluid,
Pascal and Pascal �7� solved this problem by employing a simi-
larity method. Das and Arakeri �8� developed analytical solutions
for various transient volume flow rates for a Newtonian fluid to
complement their earlier experimental work �9�. Chen et al.
�10–13� extended Das and Arakeri’s work by considering various
non-Newtonian fluids.

As the microflow is considered, the no-slip condition is no
longer valid. In this study, the range of Knudsen number, 0.01
�Kn�0.1, is chosen as most of the microelectromechanical sys-
tem mechanism falls into this region �14�, and the flow situations
proposed by Das and Arakeri �8� are adopted. The results show
that the analytic solutions of velocity profile and pressure gradient
are affected by the slip conditions.

2 Mathematical Formulation
When investigating the fluid rarefaction effect in a microtube,

the Knudsen number is an important nondimensional parameter:

Kn � �/L �1�

where � is the molecular mean free path, which is defined as the
mean secondary collision distance of a gas molecule, and L is the
characteristic length.

Figure 1 shows the physical configuration of Newtonian fluid
flowing in the horizontal microtube. The continuity and momen-
tum equations of this problem are

� · ��V� = 0 �2�

�� �V

�t
+ V · �V� = − �P + ��2V �3�

where � is the fluid density, V is the velocity vector, P is static
pressure, and � is the dynamic viscosity.

Using the cylindrical coordinate system �r ,� ,x�, the x-axis is
taken as the centerline direction of the circular duct, r is in the
radius direction, and � is in the circumferential direction. The
velocity vector is assumed to take the form:

V = u�r,t�i �4�

where u is the velocity in the x-coordinate direction, and i is the
unit vector in the x-coordinate direction. This effectively assumes
that the flow is fully developed at all points in time. The govern-
ing equations can be derived as

�u

�t
= −

1

�

�P

�x
+ �� �2u

�r2 +
1

r

�u

�r
	 �5�
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�P

�r
=

�P

��
= 0 �6�

where � is the kinematic viscosity.
With R the radius of duct, the boundary conditions are:

u�R,t� = − ���
�u�R,t�

�r
�7�

�u�0,t�
�r

= 0 �8�

where ��� is the velocity slip coefficient and is defined as

�� =
2 − F�

F�

�9�

and F� is the tangential momentum accommodation coefficient
and is defined as

F� �
ui − ure

ui − Uw
�10�

where ui, ure, and Uw are tangential momentum of incoming mol-
ecules, reflected molecules, and re-emitted molecules, respec-
tively. F� is the material parameter that describes the interaction
between fluid and wall, and is related to constituents of fluid,
temperature, velocity, wall temperature, roughness, and chemical
status.

The problem can be solved if the pressure gradient function is
known. In this study, the pressure gradient is determined indi-
rectly by the given inlet volume flow rate. Velocity is related to
the inlet volume flow rate by



0

R

2	ru�r,t�dr = up�t�	R2 = Q�t� �11�

where up is a known inlet velocity function.
Taking the Laplace transformation of Eqs. �5�, �7�, �8�, and �11�

yields the following equations

�2ū�r,s�
�r2 +

1

r

�ū�r,s�
�r

−
s

�
ū�r,s� =

1

u

�P̄�x,s�
�x

−
1

�
u�r,0� �12�

ū�R,s� = − ���
�ū�R,s�

�r
�13�

�ū�0,s�
�r

= 0 �14�

Q̄�s� =

0

R

2	rū�r,t�dr = ūp�s�	R2 �15�

where ū�r ,s�=�0

e−stu�r , t�dt, P̄�x ,s�=�0


e−stP�x , t�dt, and ūp�s�
=�0


e−stup�t�dt.
Equation �12� is a second-order nonhomogeneous ordinary dif-

ferential equation. The homogeneous part is the modified Bessel’s
equation of zeroth order, and if the particular solution is assumed
to be �p, the complete solution is

ū�r,s� = C1I0�mr� + C2K0�mr� + �p �16�

where m=�s /�.
The boundary conditions �13� and �14� are used to solve for the

two arbitrary coefficients C1 and C2, respectively. Substituting C1
and C2 into Eq. �16�, we get

ū�r,s� = �p�1 −
I0�mr�

�I0�mR� + ���pI1�mR��	 �17�

where I1 is the modified Bessel’s equation of the first order.
In order to solve for unknown �p, substitute Eq. �17� into �15�

and �p is obtained as

�p =
ūp�s�


1 −
2I1�mR�

mR�I0�mR� + ���pI1�mR��� �18�

Substituting �p into Eq. �17� gives

ū�r,s� = ūp�s�Ḡ�r,s� �19�

where

Ḡ�r,s� =
�I0�B�s� + �B�sI1�B�s�� − I0�A�s�

�I0�B�s� + �B�sI1�B�s�� −
2I1�B�s�

B�s

�20�

�=��� /R=�� Kn�Kn and A=r /��, B=R /��.
Taking the inverse Laplace transform, the velocity profile is

u�r,t� =
1

2	i

r−i


r+i


ūp�s�Ḡ�r,s�estds �21�

Furthermore, the pressure gradient is found by substituting Eq.
�17� into Eq. �12� to give

dP̄�x,s�
dx

= − ūp�s�
�I0�B�s� − �B�sI1�B�s��

�I0�B�s� − �B�sI1�B�s�� −
2I1�B�s�

B�s

�22�

Using the inverse Laplace transform formula, the pressure gradi-
ent distribution can also be obtained.

3 Illustration of Examples
Examples will be considered in this study to demonstrate the

effect of wall-slip conditions on the unsteady flow patterns in a
microtube.

3.1 First Example: Trapezoidal Piston Motion. The trap-
ezoidal piston motion has three stages: constant acceleration of
piston starting from rest, a period of constant velocity, and a con-
stant deceleration of the piston to a stop. The prescribed piston
velocity is assumed to vary with time as follows:

Fig. 1 Schematic representation of the problem considered
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up�t� =�
Up

t0
t for 0 � t � t0

Up for t0 � t � t1

Up

�t2 − t�
�t2 − t1�

for t1 � t � t2

0 for t2 � t � 


� �23�

where Up is the constant velocity after acceleration, and t0, t1, and
t2 are the time periods for changing piston velocity. The piston
motion can be described by the Heaviside unit step function

up�t� =
Up

t0
tH�t� −

Up

t0
tH�t − t0� + UpH�t − t0� − UpH�t − t1�

+ Up

t2 − t

t2 − t1
H�t − t1� − Up

t2 − t

t2 − t
H�t − t2� �24�

During the constant acceleration period �0� t� t0�, the velocity
distribution can be calculated by Eq. �21� as

u�r,s� =
1

2	i�2	i�
j=1

Rj	 �25�

where Rj is the residual of f�s�=UpestḠ�r ,s� / t0s2 at s=sj and is
defined as

Rj = Res
s=sj

���s�
s2 � �26�

where

��s� =
Up

t0
estḠ�r,s� �27�

It is easily observed that s=0 is a pole of order 2. Therefore, the
residue at s=0 is

Res�0� =
Up

t0
� �2t��1 − �r/R�2 + 2�� +

B2

8
�1 − �r/R�4 + 4��

1 + 4�

−

B2

6
�1 − �r/R�2 + 2���1 + 6��

�1 + 4��2 � �28�

The other singular points are the roots of the following transcen-
dental equation

�I0�B�s� + �B�sI1�B�s�� −
2I1�B�s�

B�s
= 0 �29�

Setting B�s=mR= i�, we find that

�
J1�
� + J2�
� = 0 �30�

If �n, n=1,2 ,3 , . . . ,
 are zeros of Eq. �30�, then sn=−�n
2 /B2, n

=1,2 ,3 , . . . ,
 are the simple poles, and residues at all these poles
can be obtained as

Rn = Res
s=sn

�f�s�� = lim
s→sn

��s − sn�f�s�� = lim
s→sn

�Up�s − sn�
t0s2 estḠ�r,s��

=
UpR2

t0�
�e−��n/B�2t

2�J0�
n� − �
nJ1�
n� − J0� r

R

n	�

��1 + 2��
n
3J1�
n� + �
n

4J0�
n��
� �31�

Substituting Eqs. �28� and �31� into �26�, the dimensionless veloc-
ity distribution is obtained as

u*�c,t*� =
1

t0
*� �2t*��1 − c2 + 2�� +

1

8
�1 − c4 + 16��

1 + 4�

−

1

6
�1 − c2 + 2���1 + 6��

�1 + 4��2 �
+

2

t0
*�

n=1


 
e−
n
2t* �J0�
n� − �
nJ1�
n� − J0�c
n��

��1 + 2��
n
3J1�
n� + �
n

4J0�
n���
�32�

where u*=up /Up, c=r /R, �=��Kn, t*= t� /R2= t /B2, t0
*= t0� /R2

= t0 /B2.
By the same method, the dimensionless velocity profile in the

time period of t0� t� t1 is obtained as

u*�c,t*� = 2� �1 − c2� + 2�

1 + 4�
� +

1

t0
*
e−
n

2t*�1 − e−
n
2t0

*
�

�
�J0�
n� − �
nJ1�
n� − J0�c
n��
��1 + 2��
n

3J1�
n� + �
n
4J0�
n��� �33�

During the constant deceleration period �t1� t� t2�

u*�c,t*� =
1

�t2
* − t1

*�
�2�t2

* − t1
*��1 − c2 + 2�� −

1

8
�1 − c4 + 4��

1 + 4�

+

1

6
�1 − c2 + 2���1 + 6��

�1 + 4��2 � + 2�
n=1


 � �e−
n
2t* − e−
n

2�t*−t0
*��

t0
*

−
e−
n

2�t*−t1
*�

�t2
* − t1

*�
� �J0�
n� − �
nJ1�
n� − J0�c
n��

��1 + 2��
n
3J1�
n� + �
n

4J0�
n��
, �34�

where t1
*= t1� /R2= t1 /B2, t2

*= t2� /R2= t2 /B2.
After the piston has stopped �t2� t�
�:

u*�c,t*� = 2�
n=1


 � e−
n
2t* − e−
n

2�t*−t0
*�

t0
* −

�e−
n
2�t*−t1

*� − e−
n
2�t*−t2

*��
�t2

* − t1
*�

�
�

�J0�
n� − �
nJ1�
n� − J0�c
n��
��1 + 2��
n

3J1�
n� + �
n
4J0�
n��

�35�

In addition, the dimensionless pressure gradient is also found dur-
ing these four different stages:

�i� During the constant acceleration period �0� t� t0�:

dP*

dx* = −
1

t0
*� t* +

�

2
+

1

4

�1 + 4��
−

1

12
+

�

2

�1 + 4��2�
+ �

n=1



1

4t0
*

e−�n
2t*�J0��� − ��J1����

��1 + 2���nJ1��n� + ��n
2J0��n��

�36�

where P*= P / �8�Up /R�, x*=x /R.
�ii� During the constant velocity period �t0� t� t1�:

dP*

dx* = −
1

1 + 4�

+ �
n=1



1

4t0
*

e−�n
2t*�1 − e−�n

2t0
*
��J0��� − ��J1����

��1 + 2���nJ1��n� + ��n
2J0��n��

�37�
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�iii� During the constant deceleration period �t1� t� t2�:

dP*

dx* =
− 1

�t2
* − t1

*�
� �t2

* − t1
*� − ��

2
+

1

4
	

�1 + 4��
+

1

12
+

�

2

�1 + 4��2�
+ �

n=1

� 
 1

4t0
* �e−�n

2t* − e−�n
2�t*−t0

*��

−
1

4�t2
* − t1

*�
�e−�n

2�t*−t1
*���

�
�J0��� − ��J1����

��1 + 2���nJ1��n� + ��n
2J0��n��

�38�

�iv� After the piston has stopped �t2� t�
�:

dP*
dx*

= �
n=1

� 
 1

4t0
* �e−�n

2t* − e−�n
2�t*−t0

*�� −
1

4�t2
* − t1

*�
�e−�n

2�t*−t1
*�

− e−�n
2�t*−t2

*��� �J0��� − ��J1����
��1 + 2���nJ1��n� + ��n

2J0��n��
�39�

Figure 2 shows the velocity profiles calculated for trapezoidal
piston motion at Kn=0.1 for different nondimensional times �t*
= t� /R2� with t*=0.0012, t*=0.0305, and t*=0.0366. These val-
ues are chosen for the purpose of comparing the results obtained
by this study with those obtained by Das and Arakeri �8�. When
�=0 �no-slip condition�, the velocity profiles in Eqs. �33�–�36� are
identical to Das and Arakeri’s results. Figure 2 shows the phenom-
enon of slippage on the microtube wall during four different time
periods. The development of velocity profiles is similar to that in
Das and Arakeri’s work; however, the change of velocity from the
wall to centerline is smoother than that in Das and Arakeri’s work
as a result of the existence of slippage. Figure 3 shows the varia-
tion of nondimensional pressure gradients over different time pe-

Fig. 2 Velocity profiles at different phases at Kn=0.1 „a… during the acceleration of the piston motion „profiles
are shown at time intervals of t0

* /6…, „b… when the piston velocity is constant „time intervals of „t1
* − t0

*
… /6…, „c…

during the deceleration of the piston velocity „time intervals of „t2
* − t1

*
… /4…, and „d… after the piston motion has

stopped „time intervals of „0.0427− t2
*
… /6…
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riods at Kn=0.1. During the acceleration phase, the pressure gra-
dient is negative as the pressure is higher at upstream due to the
piston acceleration. This negative pressure gradient decreases with
time as the induced flow resistance increased at downstream.

When the piston comes to constant velocity phase, the pressure
gradient changes drastically from negative to positive due to the
disappearance of acceleration motion. With the time increased, the
flow reaches the equilibrium state, which causes the pressure gra-
dient to approach zero. As the piston starts to decelerate, the pres-
sure gradient is increased as this sudden decrease in velocity,
which causes the flow to lose its momentum. Finally, when the
piston stops, the pressure gradient decays to zero. Figure 4 shows
the effect of Kn various �Kn=0,0.05,0.1� values on the velocity
profiles. During the four phases of piston motion, the larger Kn
values flatten the velocity profile. The degree of flatness is pro-
portional to the Kn value. Figure 5 shows the effect of different
Kn values on the pressure gradient for trapezoidal piston motion.
The analytical result demonstrates that a larger Kn value will in-
crease the pressure gradient to move the fluid inside the micro-
tube.

3.2 Second Example: Constant Acceleration Piston
Motion. The piston motion of constant acceleration can be de-
scribed by the following equation:

up�t� = apt = �Up

t0
	t �40�

where ap is the constant acceleration, Up is the final velocity after
acceleration, and t0 is the time period of acceleration.

The velocity profile can be found by setting t= t0 of Eq. �33�:

Fig. 3 The variation of pressure gradient with time for trap-
ezoidal piston motion at Kn=0.1

Fig. 4 The effect of different Kn values on the velocity profiles for trapezoidal piston motion: „a… t*=0.0012, „b…
t*=0.0305, „c… t*=0.0366, and „d… t*=0.0427
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u*�c,t*� =
1

t*
� �2t*��1 − c2 + 2�� +

1

8
�1 − c4 + 16��

1 + 4�

−

1

6
�1 − c2 + 2���1 + 6��

�1 + 4��2 �
+

2

t*�n=1


 
e−�n
2t* �J0��n� − ��nJ1��n� − J0�c�n��

��1 + 2���n
3J1��n� + ��n

4J0��n���
�41�

and when the time approaches infinity, the pressure gradient is

dP*

dx* = −
1

�1 + 4��
−
��

2
+

1

4
	aPR2

�1 + 4���uP
+
� 1

12
+

�

2
	aPR2

�1 + 4��2�uP

−
1

t*
� t* +

�

2
+

1

4

�1 + 4��
−
� 1

12
+

�

2
	

�1 + 4��2 � �42�

3.3 Third Example: Suddenly Started Flow. For a suddenly
started flow in a circular duct:

up = 0 for t � 0

and = Up for t � 0 �43�

where Up is the constant velocity. In this case, the dimensionless
velocity profile is:

u*�c,t*� = 2
�1 − c2� + 2�

1 + 4�

− 2�
n=1




e−�n
2t* �J0��n� − ��nJ1��n� − J0�c�n��

��nJ1��n� + 2��nJ1��n� + ��n
2J0��n��

�44�

and the pressure gradient is:

dP*

dx* = −
1

�1 + 4��
−

1

4�
n=1




e−�n
2t* �n�J0��� − ��J1����

��1 + 2��J1��n� + ��nJ0��n��

�45�

3.4 Fourth Example: Suddenly Blocked Fully Developed
Flow. The exact solution of this problem was considered by Wein-
baum and Parker �15� with a no-slip wall condition, under the
initial condition, i.e., u�r ,0�=1−c2, and with the mass flow con-
dition, i.e., �0

R2	rudr=0. The resulting dimensionless velocity
profile is:

u*�c,t*� = − 2�
n=1




e−�n
2t*J0��n� − J0�c�n�

�nJ1��n�
�46�

When wall-slip is considered, the solutions for the velocity profile
and pressure gradient are

u*�c,t*� = − 2�
n=1




e−�n
2t* J0��n� − ��nJ1��n� − J0�c�n�

�nJ1��n� + 2��nJ1��n� + ��n
2J0��n�

�47�

dP*

dx* =
1

4t0
*�

n=1




e−�n
2t* �J0��n� − ��J1��n��

��1 + 2���nJ1��n� + ��n
2J0��n��

�48�

4 Conclusion
The exact solutions of velocity profiles and pressure gradients

with wall slippage phenomenon for unsteady flow through micro-
tube subject to known inlet volume flow rate conditions are given.
The analytical results are compared to those obtained by Das and
Arakeri’s work �8� for no-slip flow, and we found that the Kn
value, which represents the degree of rarefaction, plays a signifi-
cant role in influencing the velocity profile. The larger the Kn
value, the less drastic is the change of velocity distribution. Due to
wall slippage, the effort to move fluid at one cross section is larger
than at a cross section without slippage. Therefore, the pressure
gradient is also increased when the fluid has a high Kn value.
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Nomenclature
A � r /��
B � R /��
c � r /R

C1 ,C2 � arbitrary coefficients
F� � tangential momentum accommodation

coefficient
H�t� � Heaviside unit step function
I0 , I1 � modified Bessel’s function of the first kind of

zeroth and first order
Kn � Knudsen number �Kn�� /L�

K0 ,K1 � modified Bessel’s function of the second kind
of zeroth and first order, respectively

L � characteristic length of the microtube
m � �s /�
P � static pressure

P* � nondimensional pressure �p*= P / �8�Up /R��
Q � inlet volume flow rate
R � radius of microtube

r ,� ,x � cylindrical coordinates
s � parameter of the Laplace transform
t � time

Fig. 5 The effect of different Kn values on the pressure gradi-
ent for trapezoidal piston motion
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t0 , t1 , t2 � time period of acceleration, constant velocity,
and deceleration, respectively.

ur ,u� ,u � velocity components in the r-, �-, and
x-directions, respectively

ure � tangential momentum of reflected molecules
ui � tangential momentum of incoming molecules
up � average velocity over cross section
u* � nondimensional average velocity over cross

section
Up � constant inlet piston velocity
Uw � tangential momentum of re-emitted molecules
V � velocity vector

Greek Symbols
� � nondimensional velocity slip coefficient

�� � velocity slip parameter
� � molecular mean free path

�p � assumed particular solution
� � fluid density
� � kinematic viscosity
� � dynamic viscosity
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A device was designed and built that attaches to servohydraulic
machines that typically perform material fatigue testing. The de-
vice was designed to systematically fold woven fabric and yarns of
ballistic fibers to assess the impact of mechanical folding, such as
may occur during use, on ballistic fiber properties. Initial tests
indicate that the device repeatedly folds a piece of woven fabric at
the same location. However, when the device is in the open posi-
tion, a consistent 1 cm movement of the fabric was observed. A
slight modification of the device is required to eliminate this
movement. After cycling a piece of woven poly(benzoxazole)
(PBO) fabric for 5500 cycles, an 18% reduction in the ultimate
tensile strength and strain to failure of the PBO fibers was ob-
served. Research is continuing to determine a relevant and opti-
mized testing protocol. �DOI: 10.1115/1.2755131�

1 Introduction
It has been suggested that folding of the ballistic fibers that

comprise soft body armor may also be a factor in the performance
deterioration observed worn in soft body armor. In an attempt to
quantify the impact of this mechanism, a device was designed and
built to simulate the folding that may occur to the ballistic fibers
while the vest is in use. This effort is part of a research program
being conducted by the National Institute of Standards and Tech-
nology Office of Law Enforcement and Standards �NIST-OLES�
under the auspices of the National Institute of Justice �NIJ�. A key
objective of this research program is to develop relevant and non-

destructive test procedures that link personal body-armor perfor-
mance to fundamental and measurable properties of the materials
that are used in its construction. One long-term goal of the folding
research on ballistic fibers is the development of a controlled pro-
cedure for simulating the folding that occurs in an actual vest
during various stages of its proposed lifespan. This type of proce-
dure would then allow ballistic fiber tests to be performed on body
armor whose wear and deformation history are known. Such tests
on controlled materials should help to establish the link between
use and life expectancy of the body armor.

The device described in this report was designed to fold indi-
vidual yarns and single and multiple layers of woven fabrics of
ballistic fibers by using servohydraulic testing equipment that is
often available in laboratories that perform fatigue testing of ma-
terials. Since the concept is new, a major design goal was to
incorporate sufficient flexibility into the design to allow most of
the deformation parameter space that occurs during actual use to
be systematically probed, with the end result being an optimized
and relevant deformation protocol. Furthermore, the use of off-
the-shelf testing equipment, such as the servohydraulic testing
equipment, should facilitate peer review and use by others.

2 Motivation: The Single-Fold Test
The research of Cunniff and Auerbach �1� has shown that,

within the elastic limit, a correlation exists between the ballistic
fiber properties and ballistic performance if the energy absorbed
by the ballistic fibers is decoupled from the absorbed energy as-
sociated with the vest construction, i.e., the areal density. That is,
the material properties of the fiber are decoupled from the vest
construction parameters known to depend on a manufacturer’s
vest design. From their research, the correlation between ballistic
performance and the mechanical properties of the active fiber is
quantified by the �U*�1/3 parameter shown in Eq. �1�. Therefore,
�U*�1/3 is a theoretical parameter that estimates the maximum
velocity of a bullet that the fibers of a vest can stop and is inde-
pendent of vest construction. This equation has also been derived
theoretically by Phoenix and Porwal �2,3�.

�U*�1/3 = �� f
u� f

u

2�
�E1f

�
�1/3

�1�

where � f
u is the fiber ultimate axial tensile strength �UTS�, � f

u is
the fiber ultimate tensile strain, � is the fiber density, and E1f is the
longitudinal linear elastic fiber modulus.

In a previous publication, it was shown that a modified single
fiber test �m-SFT� �4�, based on ASTM C1557-03 �5�, could be
used to obtain the fiber properties for Eq. �1�. In another report
�6�, it was shown that changes in ballistic performance could be
detected in a worn vest that was presumed to arise from ultraviolet
�UV� exposure and hydrolytic action. Since it is probable that
mechanically induced degradation may also induce subtle changes
in ballistic fiber properties, 50 fibers were extracted from a single
yarn of virgin poly�benzoxazole� �PBO� fibers and placed uni-
formly across two pieces of poster board �see Fig. 1�. The two
adjoined poster boards were then folded together, and 11.8 kg
bricks were placed on the folded poster boards and left overnight
to simulate a worst-case scenario. The visible damage induced by
the single fold is shown in Fig. 2. To ascertain the effect of this
damage on the mechanical properties of the fiber, 50 folded and
50 nonfolded virgin PBO fibers were tested randomly using the
m-SFT.

Fiber diameters were measured on each specimen by using an
optical micrometer �Excel Technologies Inc., Model VIA-1002�
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is not subject to copyright protection in the United States.
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attached to a Nikon Optiphot-POL microscope equipped with a
video camera �Optronix LX-450 RGB Remote Head microscope
camera�. The fiber image was viewed on a Sony PVM-1344Q
color video monitor. All fiber samples had diameter measurements
made at five equally spaced locations along the 6 cm gage length.

The five individual diameter measurements were averaged to give
an average diameter value for each fiber sample. The average fiber
diameters from the folded specimens were found to be
�12.6±0.5� �m, and those of the nonfolded specimens were found
to be �12.5±0.5� �m. The folded and nonfolded populations of
average fiber diameter values were indistinguishable at the 95%
confidence level �p=0.125�.

From the m-SFT, the strain-to-failure and ultimate tensile
strength of the folded virgin PBO fiber was reduced by �10%
relative to the nonfolded fibers �p=0.011 and 0.004, respectively�.
Histograms depicting the shift in the distributions are shown in
Fig. 3. In contrast to previous results on worn vests, the modulus
of the virgin fiber was also found to decrease about 15% from
�164±9� GPa to �156±12� GPa. These results indicate that the
property changes in folding should be quantifiable and that the
m-SFT is sensitive enough to observe these changes.

2.1 Device Design and Operation. The design of the experi-
mental device was motivated by the desire to use the controlled
fatigue testing features inherent in most servohydraulic test ma-
chines. To minimize damage to the servohydraulic machine by the
device, it was designed to fit on a 250 kN �55 kip� Model 810.25
MTS machine equipped with a 158.5 mm dia piston rod. To con-
vert the precise linear motion of the servohydraulic machine to
precise rotational motion, a bracket was fitted to the piston rod
that containing a spur gear and rack as shown in Fig. 4. The 28
teeth spur gear was a 16 pitch −12.70 mm face width with the
following specifications: �i� pitch diameter: 44.45 mm, �ii� hub
diameter: 38.10 mm, �iii� outer diameter: 47.75 mm, and �iv�
overall width �including face width�: 25.40 mm. This spur gear
required a bore size between 12.70 mm and 22.23 mm.

To effect the folding of the ballistic fiber material, a two-piece
clamshell design is employed �see Fig. 5�. To minimize mass,
most of the device is constructed using aluminum, except where
otherwise specified. The lower plate is connected to a platform
that is attached to the servohydraulic machine through the column
mounting brackets. Interchangeable folding rods were constructed
out of 0.635 cm dia and 1.27 cm dia stainless steel and attached to
this plate. The upper plate is attached to a 1.27 cm2 stainless steel
rod that is turned at each end to 1.27 cm dia to conform to the
required bore size of the spur gear. The top plate is attached to the
platform using two base-mount ball bearings that accommodate a

Fig. 1 Pictorial representation of single fibers stretched
across two adjoining pieces of poster board

Fig. 2 „a… Damage induced by single fold of PBO fiber, „b…
nonfolded virgin PBO fiber

Fig. 3 Histograms showing the change in strain-to-failure and ultimate tensile strength of
virgin PBO fibers caused by the single-fold test
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shaft diameter of 1.27 cm.
Each plate is equipped with teflon sheets to minimize friction

between the ballistic material and the plate surface, and in order to
hold the fabric or yarn in place, each plate is equipped with a
sliding bracket. Each sliding bracket is held in place by two
0.635 cm dia stainless steel rods that attaches to constant force
springs �rods not shown in Fig. 5�. The constant force springs
were rated for 40,000 cycles and are used to maintain constant
tension on the woven fabric or yarn.

2.2 m-SFT. This test procedure was described in a previous
publication �4� and is repeated here for the reader’s convenience.
Fifty individual fibers, each �30–40 cm long, were obtained
from a harvested yarn and mounted onto a paper tensile testing
template. The template, printed on typical 21.6 cm by 27.9 cm
printer paper that contains 1 cm major graduations and 1 mm mi-
nor graduations, held two or three rows of five fibers. Therefore,
one fiber strand generated two or three test samples, each with a
6 cm gage length. Individual fibers were initially attached tempo-
rarily to the paper template outside the region of the fiber that
would undergo diameter measurement and tensile testing with
double-sided tape �3M Stationary Products Division, St. Paul,
MN�. Prior to epoxy gluing, small strips �approximately 1.2 cm

�0.2 cm� of silver reflective tape �United Calibration Corp.� were
applied to the template at the top and bottom of the gage section
of each fiber sample. The reflective tape allows elongation mea-
surements to be made by the laser extensometer �United Calibra-
tion Corp. Model EXT 62 LOE� while the sample is undergoing
tensile testing. The fibers were then permanently bonded to the
template by epoxy adhesive �Hardman Water-Clear Epoxy,
Double/Bubble Green Package No. 04004�. The epoxy adhesive
was allowed to cover up to 0.1 cm thickness of the reflective tape
to avoid the slip between fiber, paper template, and reflective tape.

The five individual diameter measurements were averaged for
each fiber sample. Between steps in the mounting, diameter mea-
suring, and tensile testing processes, fiber samples were stored in
the dark, in wooden map cabinets.

Although the compliance method in ASTM C1557-03 has been
found to be satisfactory for quantifying the properties of new fi-
bers, the use of noncontact extensometers to detect gage section
elongation directly is often suggested if a more accurate measure
of strain is required, since specimen fragility prevents the use of
normal strain-sensing devices, such as strain gages or mechanical
extensometers. Consistent with this recommendation, a United
Calibration Corporation Model EXT-62-LOE laser extensometer
was used.

An initial gage length of 5.1 cm or greater is required for opti-
mum performance of the laser extensometer. Furthermore, be-
cause fiber strength is typically gage-length dependent, a speci-
men length reflective of the amount of material that may be
deformed during ballistic action is probably necessary. Therefore,
a gage length of 6.0 cm was chosen. The laser extensometer was
calibrated using an Epsilon extensometer calibrator Model 3590C
that has 10 cm of travel. The standard uncertainty in the strain at
6.1 cm associated with this measurement is 0.0001. The standard
uncertainty in the load cell at 100 g is 0.001 g.

3 Results and Discussions
To test the effectiveness of the device, a piece of woven fabric

�12.7 cm�38.1 cm� was attached to each sliding bracket and un-
der the 0.635 cm folding rod �see Figs. 5 and 6�. The device was
rotated through 90 deg �� /2 rad� as shown in Fig. 7 and held at
each end point for �15 s. The movement of the linear actuator
was controlled at 25.4 mm /s. Manual markings were made in
permanent ink on the edge of the sample to monitor movement of
the folded region as the specimen was repeatedly folded for ap-
proximately 5500 cycles. The folded region location remained
constant throughout the test. However, in the open position

Fig. 4 Piston rod bracket for converting linear motion of MTS
810.25 servohydraulic machine into rotational motion. Inset
shows schematics of spur gear with detail specifications given
in the text. Delrin is polyoxymethylene.

Fig. 5 Basic design of folding device attached to servohydrau-
lic machine. Constant force springs attach to sliding brackets
using 0.635 cm dia stainless steel rods „not shown…. Note: Del-
rin brace on piston rod bracket removed to better show clam-
shell design.

Fig. 6 Folding device with fabric clamped in the sliding brack-
ets and around the folding rod
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�90 deg�, the fabric moved a consistent 1 cm distance away from
the folded region. Analysis of the motion of the device indicates
that immobilizing the sliding bracket on the lower plate and ad-
justing the travel distance on the sliding bracket of the upper plate
can eliminate this movement.

Under the folding conditions with both brackets sliding, the
strain-to-failure and ultimate tensile strength as measured by the
m-SFT decreased by �18% when subject to 5500 cycles �see
Table 1�. The modulus and fiber diameter were unchanged.

4 Conclusions
The device as designed can consistently fold woven fabrics and

yarns in a manner useful for test measurements. After the cyclic
folding of the woven fabric using this device, the tensile strain and
strength of the fibers collected from the folded woven fabric
showed an 18% reduction compared to the nonfolded fibers. Al-
though slight modifications are needed to control the damage that
may occur to the fibers due to frictional sliding on the folding rod,

the folding device introduces a controlled damage region in the
fiber that can be quantitatively assessed by the modified single
fiber tensile test. More testing is planned to determine the opti-
mum and relevant testing conditions required to simulate the im-
pact of mechanical folding over a period of 5–10 years of use.
Further tests are underway to quantify the mechanism of mechani-
cal degradation.

References
�1� Cunniff, P. M., and Auerbach, M. A., 2002, “High Performance “M5” Fiber

for Ballistics/Structural Composites,” 23rd Army Science Conference, Or-
lando, AO-04

�2� Phoenix, S. L., and Porwal, P. K., 2003, A New Membrane Model for the
Ballistic Impact Response and V-50 Performance of Multi-Ply Fibrous Sys-
tems,” Int. J. Solids Struct., 40, pp. 6723–6765.

�3� Phoenix, S. L., and Porwal, P. K., 2005, “Modeling System Effects in Ballistic
Impact Into Multi-Layered Fibrous Materials for Soft Body Armor,” Int. J.
Fract., 135, �1-4�, pp. 217–249.

�4� Kim, J. H., McDonough, W. G., Blair, W., and Holmes, G. A., 2007, “The
Single Fiber Test: A Methodology for Monitoring Ballistic Performance,”
Journal of Applied Polymer Science �accepted�.

�5� ASTM D 3379-75, 1982, “Standard test method for tensile strength and
young’s modulus for high-modulus single-filament materials,” ASTM, Phila-
delphia.

�6� Holmes, G. A., Rice, K., and Snyder, C. R., 2006, “Ballistic Fibers: A Review
of the Thermal, Ultraviolet and Hydrolytic Stability of the Benzoxazole Ring
Structure,” J. Mater. Sci., 41, pp. 4105–4116.

Fig. 7 Collage showing the fabric as it goes from a closed
position „A… to the fully open position „D…

Table 1 Effect of repeated folding „5500 cycles… on woven fab-
rics composted of poly„benzoxazole… fibers

ANOVA statistics
for 95%

confidence level

Fiber
properties

Control
�NF_14�

Folded
�FF_15� F Fcrit

Fiber diameter ��m� 13.14±0.67 13.24±0.27 0.276 4.210
Modulus �GPa� 145±11 144±10 0.122 4.210
Strain-to-failure 3.14±0.26 2.59±0.54 12.364 4.210
UTS �GPa� 3.54±0.23 290±0.49 19.884 4.210
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